Search published articles


Showing 73 results for شوری

Atlassi Pak, Nabipour , Meskarbashee ,
Volume 14, Issue 51 (4-2010)
Abstract

Gray mold, caused by Botrytis cinerea, is a serious disease of cut rose flowers (Rosa hybrida L.) in Iran. In order to elucidate the effects of different potassium and calcium levels in nutrient solution on susceptibility of cut rose flowers to gray mold, this experiment was carried out as factorial design in a randomized complete block with four replications at Safi Abad Agricultural Research center in 2008 for one year. In this experiment, rose plants were grown and subjected to three levels of potassium (1.0, 5.0 and 10.0 mM) in combination with two levels of calcium (1.6 and 4.8 mM) under hydroponic condition. Rose flowers from two consecutive harvesting periods were sprayed with the conidial suspension (104 spore/ml) of B. cinerea isolate. At the end of experiment the disease severity was recorded and analyzed. The results indicated that application of 10.0 mM K in the nutrient solution led to increasing rose disease severity to gray mold (30.4 % day-1) compared to 1.0 mM (24.8 % day-1) and 5.0 mM (26.2 % day-1) of K levels (P< 0.01). The increased susceptibility was associated with a decreased concentration of Ca in the rose petals. Correlation analysis revealed that susceptibility of rose flowers to gray mold significantly increased with K to sum cations ratio in the nutrient solution (r = 0.94*). The increase of Ca supply from 1.6 to 4.8 mM resulted in decline of disease severity from 29.6 to 24.6 % day-1 (P< 0.01). Therefore, balanced application of potassium and calcium (5.0 and 4.8 mM, respectively) is recommendable for preventing antagonistic effects between them and reducing of rose gray mold intensity under hydroponic conditions.
M Gorgi, M Zahedi, A. H Khoshgoftarmanesh2,
Volume 14, Issue 53 (10-2010)
Abstract

An experiment was conducted in order to evaluate the effects of increased concentration of potassium and calcium in hydroponic nutrient solution on the response of safflower to salinity. The experiment was carried out in a glasshouse using a completely randomized design. Four saline treatments (Johnson solution containing 100 mM of NaCl, Johnson solution containing 100 mM of NaCl + 10 mM potassium, Johnson solution containing 100 mM of NaCl + 5 mM calcium, Johnson solution containing 100 mM of NaCl + 10 mM potassium + 5 mM calcium) and Johnson solution without any addition of salt as control. Leaf area per plant, shoot and root dry matter was decreased in saline treatments. The concentration of potassium and calcium in the plants were decreased but those of sodium were increased at salinity. The extent of shoot and root dry mater reduction with salinity was less in saline treatment with additional calcium alone. The addition of potassium into the nutrient solution could not mitigate the negative effects of salt stress on the plants. Increasing the concentration of both potassium and calcium in saline nutrient solution resulted in a greater reduction of shoot dry matter. The results showed that the negative effects of salinity may be alleviated by increasing the concentration of calcium in nutrient solution.
A. Haghverdi, B. Ghahraman, M. Kafi, K. Davari ,
Volume 15, Issue 58 (3-2012)
Abstract

The objective of current study was to perform screening experiment, (phase zero of response surface methodology) the analysis of salinity and water tensions for spring wheat in Mashhad region and derive water production functions. The experiment was performed in the Research Field of Agricultural Faculty of Ferdowsi University of Mashhad in 2009-2010. Two water sources were selected: saline water (10 dS/m) and water without salinity limitation (0.5 dS/m). A single replicate factorial experiment with four variables and water requirements in different growth stages, was done with each variable having two levels, 20% and 100% of water requirements. The central points of experiment area with two replications were added for estimating the curvature in the fitted response surface. The results showed the water requirements in heading and flowering were the most important variables. The fitted water production functions estimated the yield of saline and non saline plots with correlation coefficients equalsing 0.95 and 0.99. In general, the obtained results proved the efficiency of the screening experiment in identifying the relative importance of variables and excluding the ineffective variables
M. Navabian, M. Aghajani,
Volume 16, Issue 60 (7-2012)
Abstract

In Guilan province, Sefidrud River, as the main source of irrigating rice in Guilan province, has been subjected to increasing salinity and a decreasing discharge because of decreasing in the volume of sefidrud dam, diverting water upstream and entering different sewages into the river. This research tries to determine optimum irrigation depth and intermittent periods in proportion to salinity resistance at different growth stages using optimization- simulation model. After calibration, Agro-hydrological SWAP model was used to simulate different growth stages of rice. Optimization results were obtained for managing fresh and saline intermittent water, 8-day intermittent period, for salinity of 0.747 dS/m in sensitive maturity stage and salinity of 3.36 dS/m in resistant vegetative, tiller and harvest growth stages. It is suggested that the depth of irrigation water be 1, 3, 3 and 5 cm for vegetative, tiller, maturity and harvest stages, respectively. Comparing managements of irrigation and saline based on the resistance of different growth stages to salinity and exploitation of irrigating water with a constant salinity during growth periods of the plant showed that irrigation management based on resistance of different growth periods of the plant to salinity causes rice yield to be improved by 23percent.
S. Eskandari , V. Mozafari,
Volume 16, Issue 60 (7-2012)
Abstract

A greenhouse experiment was conducted to study the effects of soil copper (Cu) and salinity on growth and chemical composition of two pistachio cultivars. A factorial experiment was carried out as a completely randomized design with three replications. Treatments consisted of four Cu levels (0, 2.5, 5, and 7.5 mg Kg-1soil as CuSO4.2H2O), five salinity levels (0, 800, 1600, 2400, and 3200 mg NaCl Kg-1 soil) and two pistachio cultivars (Badami-e-Zarand and Ghazvini). Results showed that salinity significantly decreased growth parameters. Application of 3200 mg NaCl Kg-1 soil decreased shoot and root dry weights, leaf area and stem height by 67, 72, 45 and 76 % respectively. Application of 7.5 mg Cu Kg-1 soil increased shoot dry weight and leaf area by 24 and 26% respectively. Morever, there was no significant difference between growth parameters of two pistachio cultivars, except for leaf area index. Salinity stress significantly decreased shoot and root P, k and Cu total uptake, and increased that of Na and Cl. Application of 5 mg Cu Kg-1 soil significantly increased shoot Cu uptake. Since total uptake of all elements for Badami cultivar was significantly higher than the Ghazvini, it could be concluded that the latter cultivar is probably more resistant to the saline conditions.
A. R. Vaezi, A. Hoseinshahi, P. Abdinejad,
Volume 16, Issue 62 (3-2013)
Abstract

Flood spreading is one of the suitable methods to control the floods and conservation of soil and water in arid and semi-arid regions. Since soil properties may be influenced by the flood spreading, this study was carried out to investigate the effect of the flood spreading on physicochemical soil properties in Garacharyan plain located in North West of Zanjan in 2009. Three flooded areas and one control area were selected for soil sampling. Two hundred sixteen soil samples and twenty seven soil samples were taken from three flooded areas and control area, respectively. Soil infiltrability was also measured at three points both in the flooded areas and in control area. Results of the physical soil properties indicated that the soil infiltrability and available water content were significantly (p< 0.001) affected by the flood spreading in the study plains. With a decrease in sand percentage and an increase in clay in the flooded areas, soil infiltrability strongly declined. The available water content negatively correlated (p< 0.001) with clay in the areas. Soil chemical properties, including salinity, potassium, and bicarbonate, contrary to pH and total neutralizing carbonates and nitrogen, significantly (p< 0.001) increased in the flooded areas as compared with control area. Increasing of the salinity in the flood plains is associated with potassium in the flood plains (p< 0.001). There was no significant difference in organic matter and carbonate contents between the flooded areas and control area. The study revealed that controlling suspended load and solvent solids in the floods is necessary to prevent the degradation of the soil physicochemical properties (porosity, infiltration, plant water supply, and salinity and bicarbonate) and as a result improve the effectiveness of the flood spreading method in the flooded areas.
E. Amiri, A. A. Mahboubi, M. R. Mosaddeghi, H. Shirani,
Volume 18, Issue 68 (9-2014)
Abstract

In this study, the effect of soil structure under saturated and unsaturated flow conditions on nonreactive bromide (BR) transport was investigated. The soil structure treatments consisted of undisturbed columns (prismatic and granular structures), and disturbed columns (single- grain structure). A constant concentration (C0= 0.005 M) of bromide was supplied on the surface of the columns in a steady-state flow condition. For the saturated flow condition, a flux equal to the highest saturated hydraulic conductivity (Ks) of the columns was applied on all of the columns. To create the unsaturated flow condition, a flux equal to the half of the lowest Ks of the columns was imposed on all of the columns. The leaching of the columns was followed for five pore volumes (5PV) and the bromide concentration of the effluent was measured at 0.2PV intervals using bromide selective electrode. The breakthrough curve (BTC) of single- grain structure was sigmoidal (S-shaped) and similar to piston-capillry flow form. In contrast, BTCs of the granular and prismatic structures had a steep initial part and later gradual tailed part. The preferential pathways caused the early appearance of bromide in the leachate of columns of these two structures. Tailing of the BTCs might be due to dispersion and diffusion between mobile and immobile water fractions. In saturated condition, the bromide plume appeared earlier than that in the unsaturated condition because of domination of mass flow and rapid macroporous stream. The results demonstrated the importance of soil structure, preferential pathways, and flow conditions in solute and pollutant transport.
B. Khalili Moghadam, Z. Ghorbani, E. Shahbazi,
Volume 18, Issue 69 (12-2014)
Abstract

Salt with various kinds and contents is one of the most important factors affecting soil splash erosion rate. The aim of the present study was to evaluate various salinity and alkalinity levels on splash erosion rate and its components (upslope, down slope and total splash) in different slopes. A factorial experiment with three factors was conducted in a completely randomized design with three replications by a Multiple Splash Set (MSS). The treatments included splash erosion rate at 4 levels of salinity and alkalinity (EC: 2 dSm-1, SAR: 2، EC: 15, SAR: 24 ،EC: 56, SAR: 42، EC: 113, SAR: 47), two levels of rainfall intensity (2.5 and 3.5 mm.min-1) and 5% and 15% slope levels. The results showed that the organic carbon and mean weight diameter (MWD) decreased at higher levels of salinity and alkalinity. The effect of saline and sodic, slope and rainfall intensity levels on the splash erosion rate and its components was significant. Also, slope×saline and sodic, rainfall intensity×saline and sodic, slope×saline and sodic×rainfall intensity interaction treatment caused a significant increase in splash erosion rate and its components. It seems that splash erosion is increased in saline and sodic soils due to the reduction in OC and MWD


M. Mosalaei, H. Shirani, V. Mozafari, I. Esfandiarpour,
Volume 18, Issue 70 (3-2015)
Abstract

Salinity and ions toxicity are one of the main problems of agricultural lands in arid and semi-arid regions, such as Iran. In addition to the salinity problem, some other marks like boron toxicity in crops have been seen in Hossein Abad area as one of the main agricultural regions of Yazd. Therefore, this study intends to evaluate and analyze spatial variability of soil salinity as an aspect of soil degradation, and prepares soil salinity and boron maps. A regular grid sampling scheme was done through a 150 m interval. Salinity and boron were measured at the depth of 0 to 30 cm. Totally 104 samples were measured. After statistical analysis of the data and studying their distribution, Kriging estimator was used for mapping the mentioned variables. Results showed that the region has a salinity problem and does not have any boron toxicity. According to the relationship of nugget effect and sill, there was a strong dependency among all the measured factors except for boron and pH factors. The least salinity was observed in cultivated areas due to the leaching process. The boron range was between 0.07 and 1.6 mg kg-1. Salinity and soil boron were significantly correlated at 99 % confidence level. Based on the Spearman and Pearson tests, there was a positive correlation between SAR and salinity at 99 % confidence level, which shows the region has more sodic salts than others. Also, pH of the region did not present any problem for growing crops.


M. Navabian, M. Aghajani, M. Rezaei,
Volume 18, Issue 70 (3-2015)
Abstract

Water Uptake by the root under salinity and water Stress in unsaturated soils was investigated through mathematical equations in three Groups of additive, multiplicative and non-consumptive. This study was an effort to assess six water uptake functions of van Genuchten (additive and multiplicative), Dirksen et al., Van Dam et al, Skaggs et al, and Homaee, for Rasht Hashemi rice under salinity and water stress conditions. Based on field observations of Hashemi Rasht rice in 1386 and 1389, crop growth simulation model of SWAP was calibrated and validated with a correlation coefficient of 0.97 and 0.95, respectively. Water Uptake Reduction Models' parameters were determined by the simulated data using SAS statistical software. Results showed that for the anticipated reduction of Water Uptake in rice water and salinity stress conditions for Rasht Hashemi rice, Homaee model is best.


F. Mahmoodi, R. Jafari, H. R. Karimzadeh, N. Ramezani,
Volume 19, Issue 71 (6-2015)
Abstract

This study aimed to evaluate the performance of TM satellite data acquired in June 2009 to map soil salinity in southeast of Isfahan province. Ground salinity data (EC) was collected within 9 pixels, covering an area of approximately 8100 m2 using stratified random sampling technique at 53 sample sites. Spectral indices including TM bands, BI, SI1, SI2 and SI3, PC1, PC2, PC3 and also multiple linear regression modeling and maximum likelihood classification techniques were applied to the geometrically corrected image. Results of regression analysis showed that the TM band 4 had the strongest relationship with EC data (R2=0.48) and also the relationship of the modeling image using TM 3, TM 4, TM5 and PC3 was significant at the 99% confidence level. The accuracy assessment of the stratified TM4 and modeling image into five classes including 0-4, 4-20, 20-60, 60-100 and EC>100 ds/m indicated that there was more than 86% agreement with the field measurements of EC data. Therefore, it can be concluded that the discretely classified salinity maps have higher accuracy than regression methods for identifying broad areas of saline soils, and can be used as appropriate tools to manage and combat soil salinization.


J. Saleh, N. Najafi, S. Oustan,
Volume 19, Issue 72 (8-2015)
Abstract

The present study was conducted in order to investigate the effects of silicon and salinity on growth, chemical composition and physiological properties of rice var. Hashemi, in the greenhouse of agricultural college of University of Tabriz during 2011. It was arranged as factorial based on a completely randomized design with three factors consisting of silicon at four levels (control, 100, 200 and 300 mg/kg soil), salinity at four levels (control, 2, 4 and 8 dS/m) and source of salinity at two levels (NaCl and combination of different salts) with three replications. The results showed that increasing soil salinity resulted in a decrease in shoot dry weight, catalase activity and concentrations of phosphorus, potassium and reducing sugars, and an increase in glycine betaine content in the plants. The comparison between two sources of salinity also revealed that plants treated with a combination of salts experienced less vigorous decrease in dry weight and potassium, and reducing sugars' concentrations. Meanwhile, the enhancement in glycine betaine content appeared to be less intense in these plants. Hence, it could be concluded that the salinity resulting from a combination of different salts caused less damage to plants than NaCl salinity. Silicon supplementation resulted in increasing of shoot dry weight, catalase activity and concentrations of reducing sugars, glycine betaine, phosphorus and potassium. Therefore, silicon nutrition alleviated suppression effects resulting from the presence of soil salts, which means, enhanced the salt tolerance of rice.


V. Dorostkar, M. Afyuni , A. H. Khoshgoftarmanesh, M. R. Mosaddeghi , F. Rejali,
Volume 19, Issue 73 (11-2015)
Abstract

Arbuscular mycorrhizal fungi (AMF) are widespread endosymbionts in terrestrial ecosystems and their exudates have important effects on soil properties. A greenhouse experiment was conducted with six AMF treatments including four exotic species inoculums (Funneliformis mosseae ,Claroideoglomus claroideum  and Rhizophagus irregularis and a mixed isolate of three species), one mixed native AMF species treatment and a sterilized soil (control) with four salinity levels (1, 5, 10 and 15 dS m-1). AMF increased the soil (EEG) and total (TG) extractable glomalin, and also the hot water (HWC) and diluted acid (DAC) extractable carbohydrates compared to control treatment in all salinity levels. The native AMF species had the greatest effects on EEG, TG, HWC and DAC at 10 and 15 dS m-1. Soil EEG and TG concentrations were higher in the mixed exotic AMF treatment than in each AMF species. The greatest glomalin concentration was related to F. mosseae at 1, 5 and 15 dS m-1 but at 10 dS m-1 the greatest glomalin concentration was related to C. claroideum. The greatest carbohydrate concentration was related to F. mosseae at 1 and 5 dS m-1 but at 15 dS m-1 significant differences were observed among the three AMF species. Our results showed that there is an interaction between salinity and different AMF species, and a combination of them determines the function of AMF.


M. Sarai Tabrizi, M. Homaee, H. Babazadeh, F. Kaveh , M. Parsinejad,
Volume 19, Issue 73 (11-2015)
Abstract

Salinity and nutrient deficiency particularly nitrogen are two important limiting factors for yield production in arid and semi-arid regions. The objective of this study was to model basil response to combined salinity and nitrogen deficiency. To that end, modified Leibig-Sprengel (LS) and modified Mitcherlich-Baule (MB) and also some newly derived models based on combination of MB with salinity models of Maas and Hoffman (31), van Genuchten and Hoffman (36), Dirksen and Augustijn (17) and Homaee et al., (23) were evaluated. The experiment was conducted under four salinities including 1.175, 3, 5, and 8 dSm-1 and four nitrogen levels including 100, 75, 50, and 0 percent of fertilizer requirements each with three replicates. Results indicated that from among the evaluated models, the derived models of MB and Maas and Hoffman (MB-MH) (nRMSE=4.9), MB and van Genuchten and Hoffman (MB-VG) (nRMSE=5.4), and also MB and Homaee et al., (MB-H) (nRMSE=7.0) provide best fits to the measured data. Also, the comparison of two modified LS and MB models indicated that the estimated relative yield for irrigation water salinity levels by modified LS model (nRMSE=4.6) provides better results (nRMSE=5.9). However, for soil nitrogen levels and interactive effects of salinity and nitrogen, the modified MB model (nRMSE=10.3) provided better outputs (nRMSE=14.4). Consequently, instead of the modified LS and MB models the proposed models in this research can be recommended for use.


S. H. Tabatabaei, F. Mostashfi Habibabadi, M. Shayannejad, M. Dehgani,
Volume 20, Issue 75 (5-2016)
Abstract

The main objective of this study was evaluation of integrated management and mixing saline/fresh water on soil salinity distribution. For this purpose, a field was selected and 32 plots were made in it with a 6 m×2.5 m size. A split plot experiment was employed with two sunflower varieties (Alstar and Hisan33), four irrigation schemes (CIS) and four replications. Irrigation schemes being applied as treatments are: T1: every other irrigation with saline water (11 dS m-1) and fresh water (2 dS m-1) (every other irrigation), T2: fresh water - saline water, T3: mixed irrigation and T4: saline water - fresh water. Soil samples were collected from depth of 0-20, 20-40 and 40-60 cm in the early, mid and end of the irrigation season. The samples were analyzed for EC, Ca, Mg, Na and Cl. The result showed that soil salinity in depth of 40 cm is greater than salinity in depth of 20 and 60 cm in all treatments and for both sunflower varieties, in all growing stages. The maximum salinity concentration was observed in T2 among all treatments. Increasing irrigation depth has increased the soil extract’s Cl and Na in all treatments during growing season to 50 and 75 meq/L, respectively. The effects of CIS treatments are statistically significant on Ca and Mg in Alstar, and in all regimes affect on different depths. The minimum value of EC and maximum yield was observed in T4, T3, T1 and T2, respectively.


S. Ayoubi, R. Taghizadeh, Z. Namazi, A. Zolfaghari, F. Roustaee Sadrabadi,
Volume 20, Issue 76 (8-2016)
Abstract

Digital soil mapping techniques which incorporate the digital auxiliary environmental data to field observation data using software are more reliable and efficient compared to conventional surveys. Therefore, this study has been conducted to use k- Nearest Neighbors (k-NN) and artificial neural network (ANN) to predict spatial variability of soil salinity in Ardekan district in an area of 700 km2, in Yazd province. In this study, 180 soil samples were collected in a grid sampling manner and then soil chemical and physical properties were measured in laboratory. Environmental auxiliary variables were included topographic attributes, remote sensing data (ETM+) and apparent electrical conductivity (ECa). The result of the study showed that the K-mean nearest neighborhood had higher accuracy than ANN models for predicting soil electrical conductivity (ECe). Overall, k-NN models could provide significant relationships between soil salinity data and environmental auxiliary variables. The k-NN model had the root mean square and coefficient of determination of 12.10 and 0.92, respectively, between predicted and observed ECe data. Also, apparent EC, and remotely sensed indices and wetness index were identified as the most important factors for predicating the soil salinity in the studied area.


Z. Savari, S. Hojati, R. Taghizadeh-Mehrjerdi,
Volume 20, Issue 77 (11-2016)
Abstract

Salinity and alkalinity decreases physical, chemical and biological quality of soils and as a result reduces crop yield. This study aims to evaluate spatial variability of soil salinity in Ahvaz using geostatistical approaches. Accordingly, 69 surface soil samples (0-10 cm) were collected and their electrical conductivities (EC) were measured in 1:1 soil: water extracts. The data were then analyzed using ordinary kriging (OK), log-normal kriging (LOK) and indicator kriging (IK) interpolation techniques to produce soil salinity maps. Finally, the quality control of soil maps was performed by calculation of root mean square error (RMSE) and coefficient of determination (R2). The results indicated that due to the lowest RMSE and the highest R2 values, the LOK interpolation method is the best approach in mapping soil salinity in Ahvaz. The results also illustrated that based on defined threshold values (4, 8, 16, and 32 dS m-1) the indicator kriging methods have been able to show risk of soil salinity in the area. Based on this, most of the area is covered by soils with salinity higher than 4 dS m-1. Evaluation of final soil maps showed that the highest concentrations of salts are related to the western and southwestern parts of Ahvaz city. In contrast, the lowest amounts of salinity were found in Eastern and Northern parts of the city.


Prof. J. Abedi-Koupai, M. Fatahizadeh, Dr M. R. Mosaddeghi,
Volume 21, Issue 2 (8-2017)
Abstract

Today, modern irrigation systems are constructed at a very high cost to operate for optimal use of water and soil. Lack of appropriate technical, social and economic studies, caused high maintenance costs of these facilities during operation. Water resources have been polluted due to industrial development, increasing human population and non-compliance with environmental standards. Most of hydraulic structures are built in areas with poor water quality. Furthermore, engineering properties of fine-grained soils, especially the clay soils, depend on factors such as salinity of solute in the pore water. So that any change in salinity of solute leads to change in the physical and mechanical properties of soils, and consequently make damage to hydraulic structure. This study investigated the effect of water salinity on engineering properties of fine-grained soils. For this purpose, NaCl, with 5 different levels (0, 0.1, 0.2, 0.41 and 0.72 mol/L) was added to the soil and the mechanical properties of soil including compaction, shear parameters, Atterberg limits and consolidation parameters were investigated. The results showed that the addition of NaCl had made no significant changes to the maximum dry unit weight and optimum moisture content of the soil, but it reduced cohesion of soil and increased the internal friction angle .Also, Limit Liquid (LL) are decreased, but it had little effect on the Plastic Limit(PL) of soil.
 


S. A. M. Mirmohammady Maibody, S. Dybaie, H. Shariatmadari, N. Baghestani,
Volume 21, Issue 2 (8-2017)
Abstract

The adaptability of Haloxylon appilium to adverse environmental conditions and especially its capability for an appropriate establishment in saline and desert soils has introduced this plant as a suitable means for biological methods to stabilize sand dunes, control erosion and prevent desertification in arid regions. In order to evaluate the ecophysiological characteristics of Haloxylon appilium some characteristics of soils under the long term establishment, survival and development of this plant and ion composition of this plant growing in Yazd province in thirty two growing trees of similar ages and traits within 8 locations of Chah Afzal and Ashkezar were investigated and their height (H), crown diameter (CD) and the above ground biomass index (Yi) were measured. Also, after cutting the trees from their collars, soil profiles were dug underneath the tree locations and soil samples were taken at depths of 0-30, 30-60, 60-90 and 90-120cm from four sides of each profile. The samples were then analyzed for Electrical Conductivity (EC), pH and Cl, Na, Ca, Mg, K concentrations in 1:5 soil to water extracts. The results showed statistically significant differences in soil parameters between the two regions, except for pH and Mg concentrations. The ion concentration of the plants in the two regions showed statistically significant differences for only Cl in shoots and Ca in roots. Based on the plant growth indices the Chah Afzal and Eshkezar regions were respectively evaluated as suitable and unsuitable for Haloxylon appilium growth. In spite of a higher salinity, the higher Ca and K concentration and lower Na/K ratio of Chah Afzal soils may explain the better plant performance in this region against Eshkezar, however, comprehensive researches on application of Ca and K fertilizer are needed to confirm this hypothesis

M. Yazdekhasti, M. Shayannejad, H. Eshghizadeh, M. Feizi,
Volume 22, Issue 3 (11-2018)
Abstract

Due to the dry climate and limitation of fresh water resources, using fresh and salt water is a solution for crop production under salinity conditions. This study was conducted at Isfahan University of Technology as a randomized complete block design with three replications and five irrigation management treatments in 2014. The treatments included irrigation with saline water (with the salinity of 5 dS/m, based on the relative yield of 75%), irrigation with fresh water (municipal water), alternate irrigation (irrigation with saline water and the next irrigation with fresh water), conjunctive irrigation (half of irrigation with saline water and the other one with fresh water) and irrigation with fresh water to reach the raceme stage, and irrigation with saline water. The maximum wet yield, dry yield and grain yield were related to the fresh water treatment with 4.14, 2.45 and 0.588 kg/m2 and the minimum values were obtained for water their water treated with 1.34, 0.765 and 0.0957 kg/m2 respectively. The conjunctive treatment had the highest yield after fresh water treatment. The various statistical indices showed that this model could be used for sorghum in Isfahan. The determination coefficient for yield was 0.65.The priority of model for yield simulation was salt water at the last stage, alternate irrigation, saline water, conjunctive irrigation and fresh water treatments, respectively.


Page 3 from 4     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb