Search published articles


Showing 47 results for Iran

H. Fathizad, M. Tavakoli, M. A. Hakimzadeh Ardakani, R. Taghizadehmehrjardi, H. Sodaiezadeh,
Volume 24, Issue 4 (2-2021)
Abstract

The purpose of this research was to investigate the trend of annual changes in Yazd station's meteorological parameters including minimum and maximum average daily temperature and average daily precipitation (1961-2005), as well as the predicted annual mean of these parameters in the three upcoming thirty years of the 2040s, 2070s and 2100s, by the SDSM model, under RCP2.6, RCP4.5, RCP8.5, A2, and B2 scenarios. Accordingly, by using the coefficient of determination and the MAE, R2, RMSE indicators, we evaluated the data generated by the SDSM model in comparison with the observed data in the base period. The lowest value of R2 based on the calibration and validation of the mean values of observed and simulated SRES was obtained for precipitation (86 and 80%). In terms of the R2 evaluation index, the accuracy of the small-scaled results of the minimum and maximum average temperature values was more than that of the average precipitation; however, in terms of the MAE and RMSE evaluation indicators, the accuracy of the small-scaled results of the average precipitation was higher than that of the minimum and maximum average temperature values. Subsequently, HadCM3 large-scale climatological data was used to predict the future periods (2010-2100). The results indicated that the temperature was raised in all months and seasons and the precipitation was decreasing in most of them, thereby confirming that the climate was changing in the studied region.
 

F. Soroush, F. Fathian,
Volume 25, Issue 1 (5-2021)
Abstract

In the present study, the spatial and temporal changes of climate variables such as pan evaporation (Ep), temperature (T), relative humidity (RH), sunshine duration (SD), wind speed (W) and precipitation (P), as well as their relationship with altitude, were investigated. For this purpose, 68 meteorological stations with 30 years of data (1987-2016) throughout Iran on both seasonal and annual time scales were selected. Trend analysis of climate variables showed that over the past 30 years, most areas of Iran have become warmer and drier although all trends have not been significant. Investigation of the relationship between the trend slope of climate variables and altitude illustrated that there was no significant relationship between them during the study period on the annual time scale (p>0.1). However, in winter, the rate of increase in T (minimum, maximum and mean temperatures) and SD (p<0.1), as well as the rate of decrease in P (p<0.01), was significantly enhanced by increasing the altitude. The increase in mean and maximum T (p<0.1) and SD rates (p<0.001) in summer were significantly lower in the highlands than in the lowlands. In autumn, the trend slopes of minimum and mean T (p<0.05) were negatively correlated with altitude; in addition, the rates of increase in P and RH (p<0.05) in the highlands demonstrated a sharper increase. It seems, therefore, that most changes in climate variables have occurred in both autumn and winter. The results also showed that in winter, the highest rates of increase in Ts were related to the altitude of 1500-2000 m; however, the highest decrease in P belonged to the altitude of 2000-2500 m. In autumn, the highest rates of decrease in minimum and mean Ts had occurred in the altitude of 2000-2500 m; as well, he highest rate of increase in P was observed in the altitudes of both 0-500 m and 2000-2500 m.

M. Motavallizadeh Naeini, R. Modarres,
Volume 25, Issue 4 (3-2022)
Abstract

Dust storms in arid and semi-arid regions have harmful impacts on the environment, the economy, and the health of local and global communities. In this study, the frequency of annual dust events in twenty-five stations and five climatic variables including rainfall, maximum annual wind speed, average annual wind speed, maximum annual temperature, and average annual temperature in arid regions of Iran up to 2014 were used to show the effects of climatic change on dust storms. Annual correlation coefficient time series between climatic variables and dust storms were first calculated based on monthly observations. Then, the trend in climatic variables, dust storm frequency, and their correlation were assessed using the Mann-Kendal method. Results indicated that the correlation coefficients had fluctuations in time and are both significant and insignificant in different years that reach from 0.6 to 0.9 for wind speed and temperature and -0.2 to -0.6 for precipitation. This trend in correlation has the same direction with climatic variables and shows co-movement between climatic change and dust storm fluctuations in central Iran. Results also showed that wind speed and temperature have a high impact on dust storm fluctuations and rainfall reduction has an increasing effect on dust storms.

A. Shahbaee Kotenaee, H. Asakereh,
Volume 26, Issue 4 (3-2023)
Abstract

Precipitation is one of the most significant climatic parameters; its distribution and values in different areas is the result of complex linear and nonlinear relationships between atmospheric elements-climatic processes and the spatial structure of the earth's surface environment. Classification of data and placing them in small and homogeneous zones can be effective in improving the understanding of these complex relationships and their results. In the present study, zoning and analyzing the distribution of rainfall in Iran concerning environmental factors was performed using the annual precipitation data of 3423 synoptic, climatological, and gauge stations in the country during the period from 1961 to 2015 and the altitude, slope, aspect, and station density data. After standardization and preparation of the data matrix, the optimal number of clusters was determined and the data set was entered into the neural-fuzzy network model (ANFIS-FCM). The results showed that the values of R2  and MAE  indices were 0.76 and 0.23, respectively which indicate the appropriate accuracy of the model. It was also found that in the four output zones of the model, environmental factors have a high impact on the spatial distribution of precipitation. In the first and third zones, the combination of high altitude and slope factors along with geographical proximity to precipitation systems has caused the average annual rainfall in these zones to be 318 and 181 mm, respectively. The mean annual rainfall has decreased to about 100 mm by the weakening of the role of environmental factors in the second and fourth clusters.

F. Fathian, M. Ghadami, Z. Dehghan,
Volume 26, Issue 4 (3-2023)
Abstract

In this research, the trend of spatial changes in extreme indices of temperature related to the health and agriculture sectors such as the number of frost days, number of summer days, number of icing days, number of tropical nights, growing season length, diurnal temperature range, cold spell duration index, and warm spell duration index were investigated for 54 synoptic stations throughout Iran for observational (1976-2005) and future (2025-2054) periods. Daily maximum and minimum temperature data of three regional climate models namely, CCSM4, MPI-ESM-MR, and NORESM1-ME from the CORDEX project under RCP4.5 and RCP8.5 scenarios were downscaled for each station using a developed multiscale bias correction method. Then, trends and changes of extreme temperature indices were investigated using Mann-Kendall and Sen’s trend line slope methods. The results indicated that the warm indices such as the number of summer days and tropical nights indices have had a positive trend at most stations in both observational and future periods. In contrast, cold indices like the number of frost days have had a decreasing trend in most stations. The results of cold and warm spell duration indices showed that most stations have had no trend for both periods. The growing season length has increased in more than 60% of stations (45% having a significant trend) mainly located in the northern, northwestern, and western regions of the country. Based on the results, it can be concluded that without considering thoughtful climate adaptation measures, some parts of the country may face health risks and limited habitability and agriculture in the future.

A. Shahbaee Kotenaee, H. Asakereh,
Volume 27, Issue 1 (5-2023)
Abstract

Precipitation is one of the main elements of the Earth's hydro-climatic cycle and its variability depends on the complex and non-linear relationships between the climate system and environmental factors. Understanding these relationships and doing environmental planning based on them is difficult. Therefore, classifying data and dividing information into homogeneous and small categories can be helpful in this regard. In the present study, an attempt was made to prepare precipitation, altitude, slope, slope direction, and station density data for 3423 synoptic, climatological, and gauge stations in Iran in the 1961-2015 years’ period. These data were entered into fuzzy (FCM), self-organizing map neural network (SOM-ANN) models and precipitation-spatial zoning. The outputs of the two models were compared in terms of accuracy and efficiency. The results obtained from the output of the models have divided the rainfall conditions of Iran into four zones concerning environmental factors. Evaluations also showed that both models had high accuracy in classifying precipitation parameters; However, the fuzzy model has a relative advantage over the neural network model in the accuracy of results.

H. Asakereh, A. Shahbaee Kotenaee,
Volume 27, Issue 2 (9-2023)
Abstract

Identifying the behavior of precipitation is one of the most important planning principles related to water resources. In this research, an attempt was made to analyze the trend of time changes in extreme rainfall profiles of the country by using the daily rainfall data of 3423 synoptic, climatology, and rain gauge stations for the period from 1970 to 2016 and by performing interpolation using the kriging method. Then, using percentile profiles (percentile less than 10, less than 25, 25 to 75, 75 to 90, and above 90) and regression analysis, changes in the frequency of member days of each of the percentile methods over time were calculated and mapped. The results showed that during the studied period, 86.6% of cells associated with days with the tenth percentile or less in the country had an increasing trend. On the other hand, the pixels associated with days with the 90th percentile and more have shown an increasing trend. Considering that the pixels with the 25th, 25th-75th percentiles (normal), and 75th percentile have shown a decreasing trend in terms of the number of days in their group, it can be concluded that the country's rainfall conditions and the days with rainfall are towards the limit values has moved and the possibility of drought or destructive floods has increased in the country.


Page 3 from 3     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb