Search published articles


Showing 2 results for A. Javanshir

Gh. Khajouei Nejad, H. Kazemi, H. Alyari, A. Javanshir, M. J. Arvin,
Volume 9, Issue 4 (winter 2006)
Abstract

This study was conducted to evaluate the effects of four levels of irrigation (irrigation of plants after I1 = 40, I2 =60, I3 = 80 , and I4 = 100mm of evaporation from class A pan) and four plant densities(D1 = 30, D2 = 40, D3 = 50 and D4 = 60 plants/m2) on the seed yield and seed quality in three soybean cultivars(V1=Hobit, V2=Williams and V3=Hill) in a split factorial design, based on the completely randomized blocks, with three replication for two years(2001 and 2002). The Irrigation treatments were assigned to the main plots, and the plant densities and cultivars to the sub plots. Results indicated that soybean seed yield was influenced by the different irrigation and plant density levels in the both years. Irrigation levels I2 produced the highest and I4 the lowest seed yield. It was also revealed that the plant density D3 produced the highest and D1 the lowest seed yields. Among the cultivars under investigation, V2 produced the highest and V3 the lowest seed yield . Seed oil and its protein contents both were affected significantly by the irrigation levels, plant densities and cultivars in both years. The plants receiving I1 treatment had the highest and those having I4, the lowest percentages of seed oil. Changes in the plant densities also affected seed oil and protein content. The plant density of D1 caused the seeds to have the highest oil and lowest protein percentages. However, D4 decreased oil and increased protein percentages. The highest water use efficiency was obtained from I3 and that of the lowest value from I1. The results also indicated that D4 had the highest and D1 the lowest water use efficiencies. Therefore, it could be concluded that the water use efficiency can be increased by increasing the plant density per unit area. The highest efficiency for biological and grain yield belonged to V2 and V1 respectively where as the lowest efficiency for those two mentioned characters belonged to V1 and V3, respectively. However, the treatment I2V2D2 is recommended for higer the seed yield production per unit area.
Gh. Mohammadi, K. Ghasemi Golezani, A. Javanshir, M. Moghaddam,
Volume 10, Issue 2 (summer 2006)
Abstract

In order to investigate the effect of different irrigation regimes on some agronomic and physiological characters of three chickpea cultivars (Jam, 301 and Pirooz), a field experiment was conducted in 1998 at the Agricultural Research Farm of Tabriz University, Tabriz, Iran. A split plot experiment based on a randomized complete block design with three replications was used, in which irrigation treatments (full irrigation, irrigation at only branching or flowering and or pod formation stage) were in the main plots and chickpea cultivars were in the sub plots. Under limited irrigation conditions there were no significant differences among irrigation regimes for green cover percentage and the number of pods per plant while rate and duration of grain filling, grain weight and grain yield were significantly higher for irrigation at pod formation than for irrigation at branching or flowering stage. The mean of all the traits, except for the number of seeds per pod were significantly higher for full irrigation than for limited irrigation treatments. Rate of grain filling, maximum grain weight and grain yield were significantly higher for irrigation at flowering than for irrigation at branching stage. While, other characters were not significantly different between these two treatments. Although, green cover percentage and seeds per pod in 301 were higher than those in Jam, but in other cases their response to water limitation was almost similar. All traits, except the number pods per plant, were noticeably lower for Pirooz compared to Jam and 301 cultivars. Green cover percentage showed the highest correlation with the grain yield. This study revealed that among phenological stages of chickpea, pod formation is the most sensitive to water deficit, and that under water limitation conditions chickpea yield could be improved by irrigation at this stage.

Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb