Search published articles


Showing 53 results for Abbasi

M. A Hajabbasi, A. F Mirlohi, M. Sadrarhami,
Volume 3, Issue 3 (fall 1999)
Abstract

A two-year study (1996-97) was conducted to verify tillage effects on several soil properties and corn yield. The soil (fine loamy, Thermic, typic Haplargids) was treated by conventional (CT) and no-till (NT) systems. Soil organic matter (OM), mean weight diameter (MWD), penetration resistance (Cl), bulk density (BD), total nitrogen (TN) and aggregate size distribution at depths of 0-20 and 20-40 cm were measured.

No-till system caused the OM to be twice as much as that in the conventional tillage system. Total nitrogen in the NT and at depths of 0-20 and 20-40 cm were higher by 30% and 20%, respectively. No differences obtained in bulk density and penetration resistance, but MWD in the NT was 20% and 10% higher than CT in the 0-20 and 20-40 cm depths, respectively. Mean weight diameter of the aggregates in the CT was smaller than that in NT. Aggregates of less than 0.25 mm at 0-20 cm depths were almost 25% higher in CT compared to NT system. The yield in the NT system was significantly lower than CT. Although reduced cultivation could bring a better soil physical condition, low initial organic matter, weak structure and heavy-textured soil produced unsuitable conditions for the crop roots and, consequently, resulted in low yield. Therefore, no-till system in this region would not be recommended.


M.r. Mosaddeghi, M.a. Hajabbasi, A. Hemmat, M. Afyuni,
Volume 3, Issue 4 (winter 2000)
Abstract

Soil structure maintenance and stability is an important index indicating sustainable soil management. In this regard, components such as soil moisture and organic matter affect soil compactibility during farm machinery trafficking. Soils in Central Iran are commonly very low in organic matter (OM) and thus susceptible to compaction. This study was conducted to measure the effects of soil moisture content and manure application on soil compactibility. A randomized complete block design with four blocks (replicates) with the treatments nested (split-block) into the blocks was used in the soil (Typic Haplargids), located in Isfahan University of Technology Research Farm (Lavark). One-year aged manure treatments 0, 50, and 100 t ha-1 were incorporated into soil up to the tillage depth (20 cm) by a heavy disc. After five months (July-November), a two-wheel-drive tractor Universal Model U-650 was passed through the field at soil moisture contents of plastic limit (PL), 80% PL (0.8PL), and 60% PL (0.6L), either once (P1) or twice (P2). Bulk density (BD), cone index (CI), and soil sinkage (S) were measured as indices of soil compactibility and trafficability. Adding manure countered the effects of load and wetness on BD and CI, significantly. There was a significant difference between the effects of 50 and 100 t ha-1 of manure on BD but not on CI. Manure application reduced soil sinkage at high moisture contents (PL) but increased it at low moisture contents (0.6PL). Adding manure also reduced the BD and CI of subsoil. Repeating the passage of tractor (P2) increased compaction significantly. The significant increase in BD and CI did no occur at 0.6PL. When no manure was applied even at 0.6PL, there were limitations for trafficability, whereas this limit for 50 t ha-1 treatment was reached at 0.8PL. Results from this study indicate that the manure application at a rate of 50 t ha-1 reduces soil compactibility and increases soil moisture trafficability range.
M.a. Hajabbasi, A. Jalalian, J. Khajedin, H.r. Karimzadeh,
Volume 6, Issue 1 (spring 2002)
Abstract

Due to physiography and weak structure, the pasture soils in Boroojen are potentially degradable. Converting pastures to agricultural land accelerates the degradation processes. A study was conducted in 1999 to show the effects of almost 20 years of farming on originally pasture land on soil physical properties, fertility, and tilth index of pastures in Boroojen region in Chahar Mahal and Bakhtiari Province (central Zagrous). Soil texture, clay content, bulk density, organic matter, saturation moisture percent, cone index, plasticity index, mean weight diameter and aggregate size and distribution, nitrogen, phosphorus, and potassium were measured.

After 20 years of cultivation, bulk density increased about 20% while organic matter decreased by 30%. Cone index was lower in the undisturbed pasture but nitrogen and phosphorus contents were higher compared to the disturbed pasture. The undisturbed pasture contained more larger (> 1 mm) aggregates, while the disturbed pasture had more smaller aggregates. Sustainable use of natural resources will lead to their long term workability, while negligence of conservational practices including appropriate farming management practices will result in the destruction of these resources.


A. R. Abbasian, R. Ebadi,
Volume 6, Issue 2 (summer 2002)
Abstract

In order to study the effects of different protein feeds on honey bees (Apis mellifera L), experiments were conducted in a completely randomized block design with 15 treatments and 4 replicates. The nutritional effects of different treatments on caged bees were studied through recording half-life time (50% mortality). Pollen substitutes were soybean flour, soybean meal, bread yeast, wheat gluten, soybean flour + soybean meal, soybean flour + bread yeast, soybean flour + wheat gluten, soybean meal + wheat gluten, and wheat gluten + bread yeast. Pollen supplements were wheat gluten + pollen , soybean flour + pollen, soybean meal + pollen, bread yeast + pollen and two controls as pollen and honey. The nutritional effects of different protein sources provided by pollen substitutes and supplements were recorded on the amount of carcass protein and fatbody of honey bee workers in experimental colonies. The wheat gluten supplement and the soybean substitute showed the longest (60.58 days) and the shortest (10.53 days) half-life time of worker bees, respectively. The amount of food consumption in different treatments was not significantly different (P>0.05). The greatest DM of worker bees (dry matter of carcass) was related to soybean (34%) and the least related to yeast supplement (31.54%), which were significantly different (P<0.05). The highest carcass protein belonged to wheat gluten supplement (22.57%) and the lowest was related to yeast supplement (20.01%). The greatest carcass fat was related to soybean supplement (4.75%) and the lowest to wheat gluten supplement (3.84%). Results of the present experiments showed that soybean flour, soybean meal, wheat gluten and bread yeast can be used in pollen supplement and substitute cakes.
M. R. Mosaddeghi, A. Hemmat, M. A. Hajabbasi,
Volume 7, Issue 1 (spring 2003)
Abstract

Soil tilth is crucial to seedling emergence, plant growth, and crop yield. Soil tilth of unstable soil is very susceptible to change. Internal forces originating from matric suction can change soil physical properties. A laboratory study was conducted on pots of a surface silty clay loam soil of Khomeinishahr series (fine-loamy, mixed, thermic Typic Haplargids, USDA), located in Research Farm of Isfahan University of Technology. Soil surface subsidence, bulk density, cone index, and tensile strength were measured after first flood irrigation. Results showed that the seedbed (0-20 cm) with a bulk density of 1.2 Mg.m-3 will be changed to a massive soil with high values of bulk density, cone index, and tensile strength after soil wetting. Slaking, slumping and coalescence of the soil caused soil surface to subside about 1.5 cm in 20 cm soil layer. After irrigation, cone index and tensile strength increased abruptly with decreasing of moisture content. It is shown that the dominant source of strength (cone index and tensile strength) gain during drying is the effective stress due to matric suction. In the absence of external loads, physical state (tilth) of the soil returned back to the original state. Therefore, soil slaking and slumping and rearrangement of particles along with the internal forces are the factors leading to soil hardness.
Z. Abbasi, G. Saeidi, A. F. Mirlohi,
Volume 7, Issue 1 (spring 2003)
Abstract

Flax (Linum usitatissimum L.), an oilseed crop, is widely adapted and grown in many regions of the world. Oil from regular flaxseed is used as an industrial drying oil because of the high level of linolenic acid (>50 %). However, the oils from new mutant genotypes of flax with a very low linolenic acid concentration (<2 %) are edible. Yellow seed colour can be used as a visual marker to distinguish edible-oil genotypes of flax from those of industrial type that are usually brown-seeded. In this study, different lines of flax with two seed colours (yellow and brown) in combination with two levels of linolenic acid (high and low) were evaluated in a randomized complete block design for agronomic traits, especially seed yield and its components. The results indicated that lines with high linolenic acid concentration had significantly higher seed yield than those with low linolenic acid. However, other characteristics including those of seed yield components were not siginficantly affected by linolenic acid concentration. Seed colour had a significant effect on number of seedling/m2, basal branches, capsules per plant and seed yield per plant. Although seedling emergence was lower in yellow-seeded lines, they had more basal branches, capsules per plant and seed yield per plant. Higher seed yield per plant in yellow-seeded lines can be attributed to higher number of capsules per plant as a result of lower seedling emergence and plant density. Seed yield was not significantly different between brown and yellow-seeded lines. Thus, the effect of lower plant density in yellow-seeded lines was compensated by their higher basal branches and number of capsules per plant.
M. Hajian Shahri, M. Abbasi,
Volume 8, Issue 4 (winter 2005)
Abstract

In order to investigate variations of spore population, root colonization and also to determine mycorrhizal symbiosis in the root and rhizosphere of Pistachio trees (Pistacia vera) in natural forests, two study stations in Kalat (Chachaeh) and Sarakhs (Shorlogh) regions were selected. Sampling from soil and root of the trees were taken from under the canopy and from a depth of 30 cm. On a monthly basis. The roots were stained and the colonization rate and the variations of spore population were measured. Some soil characteristics including pH, moisture, organic material percentage and available phosphorus were determined, The correlation coefficients between the measured factors were calculated. The results indicated that vesicular – arbuscular mycorrhiza (VAM) was the only symbiotic mycorriza of pistachio trees. Average amounts of root colonization were 13% and 11% in Chahchaheh and Shorlogh stations, respectively. Also, average numbers of spores per 1 gram of dry soil in the above stations were 12 and 10, respectively. The correlation between the variation of spore population and colonization levels was positive but the correlation between spore population and soil moisture, organic material, available phosphorus and pH was negative.
M. Sharifi, M. Hajabbasi, M. Kalbasi, M. Mobli,
Volume 9, Issue 1 (spring 2005)
Abstract

Potato (Solanum tuberosum L.) has relatively weak root system and requires high nitrogen fertilizer which is costly and may pose environmental pollution. This study was conducted to compare root morphological characteristics and nitrogen uptake of some potato cultivars growing in Iran. A greenhouse experiment using a completely randomized design with 3 replications and 8 potato cultivars including: Arinda, Agria, Premiere, Diamant, Concord, Marfona, Marodana and Nevita was conducted at Isfahan University of Technology, Isfahan. Virus-free seed tubers were planted and grown up to flowering stage. The plants were then harvested and their root length (RL), root average diameter (RAD) and root surface area (RSA) were determined using a Delta-T Scan image analysis system and Windias software. Root length density (RLD), root length and shoot weight ratio (R/S) were also calculated. Dry mater production and nitrogen accumulation (total nitrogen uptake) (PNA) were also determined. Soil inorganic nitrogen was measured before planting and after harvest. All measured parameters, except RAD, were significantly (p<0.05) affected by cultivar. Large differences observed between cultivars for all traits indicated genetic diversity among the studied potato cultivars. The highest and the lowest values of RL, RLD, RSA, R/S, RDW and PNA were found in Marfona and Nevita respectively. Based on cluster analysis, cultivars were divided into four different groups. Under the condition of this study, Marfona was superior whereas Arinda, Nevita, Marodana and Agria were inferior. Due to the high differences in root morphological characteristics and nitrogen uptake among potato cultivars, plant breeders may produce cultivars with larger root volumes and high nitrogen uptake.
H. Naghavi, M. A. Hajabbasi, M. Afyuni,
Volume 9, Issue 3 (fall 2005)
Abstract

The objective of this study was to evaluate effects of cow manure on soil hydraulic properties and bromide leaching in a sandy loam soil (coarse loamy mixed, Typic Torrifluvents). Manure was applied at 0, 30, and 60 tha-1 at three replications in a completely random design. Three months after manure application potassium bromide (KBr) at rate of 300 Kg ha-1 Br was uniformly applied on the surface. Soil bulk density, porosity, organic matter, and soil moisture at18 levels of matric potentials were determined. Soil samples to the depth of 105 cm at 15-cm increments were collected after 100, 200 and 400 mm of irrigation. Soil bulk density, porosity, organic matter content, and soil moisture at different levels of matric potential increased significantly with manure application. Manure application also significantly affected the hydraulic parameters. Bromide leaching was significantly lower in plots with manure application and the greatest leaching occurred at the zero manure application treatment. The center of mass evaluation indicated a relatively similar result with measured values.
H. R. Ali Abbasi, M. Esfahani, B. Rabiei, M. Kavousi,
Volume 10, Issue 4 (winter 2007)
Abstract

Effect of nitrogen (N) fertilizer levels and its split applications on yield and yield components of rice (Oryza sativa L.) Cv. Khazar was investigated in a completely randomized block design with 3 replications in a paddy light soil at Guilan province, Iran, 2003. In this experiment, six treatments including: T1-control (no N fertilizer) T2- 40 kg/ha N (at transplanting time) T3- 80 kg/ha N (at transplanting, and tillering times) T4- 80 kg/ha N (at transplanting, tillering, and panicle initiation times) T5- 120 kg/ha N (at transplanting, and tillering times) and T6- 120 kg/ha N (at transplanting, tillering, and panicle initiation times) were compared. Results showed that the highest fertile tiller number was obtained in the fifth and sixth treatments with double and triple split applications of 120 kg/h N (236 and 248 m-2). The highest fertile filled spikelets percentage (84.8%), 1000-grain weight (26.1 g) and grain yield (4.83 t/ha) belonged to the sixth treatment, but grain yield and 1000-grain weight were not significantly differerent in the fourth and sixth treatments with three fertilizing times. This finding may have resulted from the third topdressing application of nitrogen fertilizer in panicle initiation and higher leaf area (44.8 and 45.5 Cm2), leaf greenness (39.4 and 39.9) and leaf nitrogen concentration (31.2 and 33.6 g/kg) during grain filling in the fourth and sixth treatments. Regression analysis also showed that flag leaf greenness (SPAD values at 5 days after flowering) and flag leaf area accounted for about 75% and 78% changes in yield, respectively. In conclusion, triple split application of 80 kgN/ha could be suggested for rice Cv. Khazar in these regions since the yield would be the same as the application of 120Kg/ha N.
F. Abbasi, F. Tajik,
Volume 11, Issue 1 (spring 2007)
Abstract

Estimation of unsaturated soil hydraulic and solute transport properties by Inverse modeling has thus far been limited mostly to analyses of one-dimensional experiments in the laboratory, often assuming steady-state conditions. This is partly because of the high cost and difficulties in accurately measuring and collecting adequate field-scale data sets, and partly because of difficulties in describing spatial and temporal variability in the soil hydraulic properties. In this study we estimated soil hydraulic and solute transport parameters from several two-dimensional furrow irrigation experiments under transient conditions. Three blocked-end furrow irrigation experiments were carried out, each of the same duration but with different amounts of infiltrating water and solutes resulting from water depths of 6, 10, and 14 cm in the furrows. Two more experiments were carried out with the same amounts of applied water and solute, and hence for different durations, on furrows with water depths of 6 and 10 cm. The saturated hydraulic conductivity (Ks) and solute transport parameters in the physical equilibrium convection-dispersion (CDE) and physical nonequilibrium mobile/ immobile (MIM) transport models were inversely estimated using the Levenberg-Marquardt optimization algorithm in combination with the HYDRUS-2D numerical code. Estimated Ks-values ranged from 0.0389 to 0.0996 cm min-1, with a coefficient of variation of 48%. Estimated immobile water contents (θim) were more or less constant at a relatively low average value of 0.025 cm3 cm-3, whereas the first-order exchange coefficient (ω) varied between 0.10 and 19.52 min-1. The longitudinal dispersivity (DL) ranged from 2.6 to 32.8 cm, and the transverse dispersivity (DT) from 0.03 to 2.20 cm. DL showed some dependency on water level and irrigation/solute application time in the furrows, but no obvious effect was found on Ks and other transport parameters. Agreement between measured and predicted infiltration rates was satisfactory, whereas soil water contents were somewhat overestimated and solute concentrations underestimated. Differences between predicted solute distributions obtained with the CDE and MIM transport models were relatively small. This finding and the value of optimized parameters indicate that observed data were sufficiently well described using the simpler CDE model, and that immobile water did not play a major role in the transport process.
M. Yoosefi, H. Shariatmadari, M.a. Hajabbasi,
Volume 11, Issue 42 (winter 2008)
Abstract

  Adopting proper agricultural management and conserving soil organic matter are important components of sustainable agriculture. Soil organic matter content is a key attribute in soil quality. Labile organic matter pools can be considered as suitable indicators of soil quality that are very sensitive to changes in soil management practices. This research was carried out to investigate some organic carbon labile pools as an indicator evaluating the effects of different managements on some quality parameters of two calcareous soils. The study was conducted in 2 locations: 1- plots that receiving 0 (C1), 25 (C2), 50 (C3) and 100 (C4) Mg/ha of manure for five years successively with a cropping rotation of wheat –corn every year and plots under three cropping rotations (C5, C6 and C7) at Lavark experimental farm and 2- inquiry research station of Fozveh at different plots with three different cropping rotations (C8, C9 and C10) with a given cropping history recorded for the last 5 years. Soil samples were taken from the center of each plot and the depths of 0-5 cm and 5-15 cm. Their organic carbon, hot water soluble carbohydrate, particulate organic matter (POM), organic carbon and hot water soluble carbohydrate of POM, mean weight diameter of water stable aggregates were determined. Different managements consisting of different levels of manure and types of cropping rotation had significant effects on the soil characteristics measured. The greateast amount of carbohydrate and aggregate stability was obtained in the plots of 100 Mg/ha of manure in Lavak and in alfalfa plots in Fozveh station. Also, the results showed that aggregate stability has a better correlation with hot water soluble carbohydrate in comparison with other soil organic pools. Therefore, the carbohydrate extracted by hot water may be used as an index to assess the impacts of different agricultural management systems on soil quality.


H. Bayat, A.a. Mahbobi, M.a. Hajabbasi, M.r. Mosaddeghi,
Volume 11, Issue 42 (winter 2008)
Abstract

  Tillage is one of the important managing factors that can destroy or improve soil structure. Soil structure is affected by the machines and shape of the wheels. Field experiments were conducted at Hamadan Agricultural Research Station on a coarse loamy mixed mesic Calcixerolic Xerocrepts soil to measure and evaluate the effects of tillage and wheel-induced compaction on selected soil physical properties. Treatments included tillage methods (Moldboard Plow and Chisel Plow, (MP, CP)) performed using three customary tractors in Iran [John Deer (J), Romany (R) and Massey Ferguson ( MF) ]. Traffic zone and non traffic zone were other treatments. A split-plot design with three replications was used in a completely randomized arrangement of treatments. Soil samples were taken at the end of wheat growth season in traffic and non- traffic zone and from four layers and compared for bulk density (BD), cone index (CI), and mean weight diameter (MWD). The influence of both tillage methods on BD in most soil depths was not significant, meanwhile, BD was higher in the deeper layers. Wheel traffic did not affect BD significantly, but its effect decreased by increasing the depth. Commonly, conservation tillage increased structural stability as evaluated by MWD. Cone index illustrated the same trend as for BD, with some variation because of it higher sensitivity, so it was significantly was increased in CP rather than in MP for the traffic zone. Such a difference was not observed in non-traffic zone. The CI was also significantly increased in traffic zone compared with non-traffic zone. J significantly increased CI in two first layer in comparing with MF, but there was not significant difference between J and R. The MWD was increased by chisel plow in non-traffic zone and this increment was significant in fourth soil layer (22.5- 30 cm). Wheel traffic caused the increase of MWD in the second layer and significant difference was not observed in other layers. Overall, R caused less destruction in soil structure and tillage methods changed some of soil physical properties.


M.a. Hajabbasi, A. Besalatpour, A.r. Melali,
Volume 11, Issue 42 (winter 2008)
Abstract

  Applying of intensive cultivation especially in marginal and sensitive regions, after conversion of rangelands to cropland farms, commonly causes reduction in soil quality, and thus an increase in soil degradation, erosion and runoff. This study was conducted to evaluate the land use change effects on some soil physical and chemical properties such as mean weight diameter (MWD), soil organic matter (SOM), bulk density (BD) and saturated electrical conductivity (ECe). For the experiment, soil samples were collected from 8 regions (rangeland and cultivated range) from west and southwest of Isfahan. Samples were taken from two soil layers 0-15 and 15-30 cm. Results showed that after conversion of range to cultivated lands, in some regions, SOM content was increased about 39% but in some regions decreased about 26%. This is due to the initial conditions of the regions. The ECe also increased by 41% due to this conversion. However, no changes were observed to the MWD, BD and pH in different treatments. Although there were little change to the physical and chemical properties of soil as a result of this conversion, those properties which were changed, could have a degradation effect and lower the soil quality.


A.a. Besalatpour, M.a. Hajabbasi, A.h. Khoshgoftarmanesh , M. Afyuni1,
Volume 12, Issue 44 (summer 2008)
Abstract

Total petroleum hydrocarbon (TPH) contaminations in soils may be toxic to human, plants and cause groundwater contamination. To achieve maximum TpH- reduction and to establish successfull stable vegetation cover in phytoremediation method, various criteria must be considered to choose the plants carefully. In this study, germination and subsequent growth of seven plants were tested in three soils with different petroleum contamination levels. Contamination treatments consisted of C0 (uncontaminated soil), C1 (1:1 w/w, uncontaminated: contaminated soil) and C2 (1:3 w/w, uncontaminated: contaminated soil). The experimental design was completely randomized split plots with three replications per treatment. The results showed that the presence of TPH in the soil had no effect on seed germination of agropyron, white clover, sunflower and safflower although canola seedlings were sensitive to these compounds and failed to produce dry matter yield (DMY) at the end of trial period. In contrast, seed germination of canola, puccenillia and tall fescue decreased in the petroleum contaminated soils. No reduction was found in DMY of puccenillia in contaminated soils (C1 and C2 treatments) compared to control however, the presence of TPH proportional to the contamination levels, decreased dry weight of sunflower and safflower. This reduction in growth and dry weight for tall fescue and agropyron was also observed in C2 compared to C1 treatment. Therefore, it seems that though agropyron, white clover, sunflower and safflower germinated well and the presence of TPHs in the soil treatments had no effect on their seed germination, they grew poorly. In contrast, grasses had poor seed germination but their subsequent growth and establishment in the contaminated soils was acceptable for subsequent phytoremediation trials.
S. Jannat, M. Chizari, S. Abbasi,
Volume 12, Issue 45 (fall 2008)
Abstract

The purpose of this study was to investigate dairy farmers' attitudes regarding the quality of milk and role of training in improving the quality of milk. The study was implemented in two parts. The first part was survey research and 6200 dairy farmers were the target population for this study in Golpayegan Township, Iran. Dairy farmers were selected using stratified randomization sampling method (n= 130). In the second part, 12 dairy farmers were selected. Plate count and lipid percentage of milk in 12 dairy farms were determined in a completely randomized block design with 2 treatments and 3 replications. The results of the study showed positive and statistically significant relationship between independent variables (sex, educational level, membership in dairy :::union:::s, knowledge and participation in educational programs) and dependent variable (attitude). Results of analysis of variances showed that plate count and lipid percentage in the two treatments were significantly different.
S Abbasi, H Farzanmehr,
Volume 13, Issue 47 (4-2009)
Abstract

Nowadays, Inulin, due to its nutritional properties, is widely being used all over the world. Artichoke tuber is one of its major industrial extraction sources. Therefore, in the present study we initially aimed to determine total carbohydrate, inulin, reducing sugars as well as dry matter contents of an Iranian artichoke. Thereafter, we focused on the optimization of aqueous extraction of inulin in the presence and absence of direct and indirect ultrasonic waves at various combinations of extraction time, temperature and solvent:solid ratio using Box-Behnken design and response surface methodology (RSM). Based on the experiments, the dry matter and total carbohydrate contents of Iranian artichoke were 6.7 and 3.9%, respectively. We also found that an empirical model developed by RSM could satisfactorily describe relationship between independent parameters and the yield of total carbohydrate as well as inulin. Furthermore, our findings revealed that optimal aqueous extraction of inulin could be achieved at 80ºC, for a duration of 5 min at a solvent:solid ratio of 1:5. Moreover, a direct relation was seen between the yield of extraction and the power as well as frequency of ultrasonic waves where with increasing latter variables, duration of extraction process and inulin yield considerably reduced and increased, respectively.
H.a Alizadeh , F Abbasi , A Liaghat ,
Volume 14, Issue 51 (spring 2010)
Abstract

The application of N fertilizers with surface irrigation stream (surface N fertigation( is a key approach for fertilizer management. The main objective of this study was to investigate furrow fertigation management effects on distribution uniformity and runoff losses of nitrate in field scale. A field corn experiment was carried out with a complete randomized block design having 12 experiments. The field experiments were carried out in free draining furrows having 165 m length and 0.006 m/m slope in Karaj. Required urea fertilizer was applied in four stages: before planting, in seven leaves stage, shooting stage and earring stage. The first stage was accomplished by traditional method and other stages were applied with irrigation water (fertigation). Fertigation timing was respectively 60, 35, and 20 min in the three fertigation stages. Results showed that distribution uniformity of water and fertilizer of low half (DULH) provided high values for all experiments. DULH ranged between 88.0 to 99.0% and 89.7 to 96.0%, respectively for water and fertilizer. Also, distribution uniformity of low quarter (DULQ) ranged between 86.0 to 98.2% and 85.7 to 91.5%, respectively for water and fertilizer. Nitrate losses through surface runoff ranged between 5.7 to 42.0%. Duncan test results for comparison between different experiments showed that there was significant difference (p=0.95) between fertilizer losses at the level of fertilizer injection time of 60 and 35 minutes, but there was no significant difference between levels of 35 and 20 minutes.
J. Fallahzade, M.a Hajabbasi ,
Volume 14, Issue 51 (spring 2010)
Abstract

Determination of carbohydrates in soil requires prior extraction and numerous extraction methods were suggested for this purpose. Three methods and five extractants were applied in order to extract carbohydrate fraction in three soil types forest, clayey and saline soils. The extraction methods were: 1) shaken in a plane rotary shaking machine for 16 h 2) heated in steam-bath for 2.5 h and 3) heated in oven for 24 h and extractants included 1) 0.5 M HCL, (2) 0.25 M H2SO4, 3) 0.5 M H2SO4, 4) 0.5 M K2SO4 and 5) distilled water. Carbohydrate content in soil was measured by phenol-sulphuric acid method. The addition of phenol to the extracted solution of HCl caused to milky precipitation. Therefore, this extractant can not be used for carbohydrate extraction in the phenol-sulphuric acid spectroscopic method. The results showed that in all soils and in the shaker extraction method, carbohydrate content was lower than in the oven and steam-bath extraction methods. In the forest and saline soils, the extracted carbohydrate content was not significantly different among the oven and steam-bath methods. For the clayey soil, the carbohydrate content was higher in the oven method than that of the steam-bath method. In all soils, the extracted carbohydrate by 0.5 M H2SO4 extractant was greater than those of other extractants. In the forest and saline soils, the extracted carbohydrate by distilled water was lower than those of other extractants. Using steam-bath method (for the forest and saline soils) and oven method (for the clayey soil) with 0.5 M H2SO4 extracted the highest amount of carbohydrates.
H Shirani, M.a Hajabbasi, M Afyuni , A Hemmat ,
Volume 14, Issue 51 (spring 2010)
Abstract

Tillage systems and organic manures could affect soil physical and mechanical properties. This study was conducted to investigate the impacts of two tillage systems including conventional tillage by moldboard plowing (plowing depth, 30 cm) and reduced tillage by disk plow (plowing depth, 15 cm) and three rates (0, 30 and 60 ton ha-1) of farmyard manure (FYM) on the soil penetration resistance under corn cropping in a split block design with 3 replications. The cone index (CI) decreased with increase of the tillage depth. It is attributable to soil disturbing and loosening of the deeper layers under conventional tillage compared to reduced tillage. This trend, however, was observed only in the first (after treatments’ application and before cropping) and second (the highest rate of vegetative growth) samplings. In the third sampling (after harvest), there were not significant differences between the CI values under two tillage systems in different soil depths. It might be due to soil re-compaction (approaching the pre-tillage state) as well as disappearance of the tillage effects seven month after commencement of the experiment. In fact, the soil mechanical resistance increased with the time indicating soil re-compaction over the growing season. Adding FYM to the surface layer (i.e. 0-10 cm) of ridge soil resulted in significant decrease of soil mechanical resistance compared to control treatment. The CI decreased significantly in the 30 ton ha-1 treatment up to the stage of highest rate of vegetative grow, but the effect on CI was diminished after harvest. However, the decreasing effects of the 60 ton ha-1 treatment on the CI continued to the harvesting time. There were no significant effects of FYM in the soil deeper than 10 cm from the ridge surface and in all of the layers in furrow. The CI did not decrease significantly in the furrow due to negligible effect of manure application for the inter-row position.

Page 1 from 3    
First
Previous
1
 

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb