Search published articles


Showing 6 results for Abtahi

A. Abtahi,
Volume 5, Issue 1 (spring 2001)
Abstract

The effect of soil salinity on plant growth is due to two factors, namely, increase in osmotic pressure of soil solution and the ionic composition of salt. The present experiment was conducted to obtain information about the response of pistachio (Pistacia vera L.) to salinity and ionic composition of the salt. Salinity with different relative composition of sodium chloride and sodium sulfate were applied to two pistachio cultivars, Fandoghi and Badami. Yield (dry matter of leaf and shoots produced in each pot) of plants were compared by the analysis of variances method of F and Duncan tests.

The yields of the cultivars were significantly different (P≤0.01) with Fandoghi cultivar producing less shoots and leaf and, consequently, lower total dry matter. Increasing the salinity level decreased the plant growth. Leaves were more sensitive to salinity. Increasing the ratio of sulfate salt alleviated the depressive effect of salinity such that when salinity was 100% sodium sulfate, the dry matter yield of shoots was 1.5 times and that of leaf was 1.7 times higher compared to the treatment where salinity was 100% sodium chloride. Leaf was more sensitive than shoots and, therefore, it showed a more positive response to chloride decreasing.


J. Yasrebi, N. Karimian, M. Maftoun, A. Abtahi, A. Ronaghi, M. T. Assad,
Volume 7, Issue 4 (winter 2004)
Abstract

Twenty-five surface samples of calcareous soils of Fars Province were used to study the distribution of different nitrogen (N) forms to determine the relationship between the N forms and soil charcteristics, and to obtain regression equations for prediction of N forms from soil characteristics. The forms determined were: soil total nitrogen NO3-N by phenol disulfunic acid NO3-N extractable by 2 M KCl NH4-N extractable by 2 M KCl, 1 N sulfuric acid, and 0.25 N sodium hydroxide oxidative released N by acid permanganate and alkaline permanganate and NH4-N extractable by 2 M KCl at 100 oC. The highest amount of N was that released by alkaline permanganate which constituted 4.47% of soil total N and the lowest form was exchangeable NH4+ which amounted to only 0.6% of total N. Water soluble and exchangeable forms accounted for less than 2% of total N. Highly significant correlations were found between total N and acid permanganate-N (r=0.931) and total N and alkaline permanganate-N (r=0.850). Highly significant regression equations were obtained for prediction of soil total N, acid permanganate-N, and alkaline permanganate-N from soil organic matter (OM), which is an indication of a close relationship of these N forms with OM.
S. Shakeri, S. A. Abtahi, N. A. Karimian, M. Baghernejad, H. Owliaie,
Volume 19, Issue 73 (fall 2015)
Abstract

The aim of this study was to assess the kinetics of nonexcheangable potassium release in surface and subsurface soil horizons, using organic and inorganic extractions, in Kohgilouye-va-Boyerahmad Province. Kinetics of K+ release was studied by successive extractions of K from 64 selective surface and subsurface soil samples, using 0.01 M CaCl2 and 0.01 M oxalic acid, for 1948 h, with two replicates. Nonexchangeable K+ release was fitted by Elovich, Pseudo-first order, Power function and Parabolic equations. Result showed that the average nonexchangeable K+ released (extracted by 1M HNO3) was 356 mg/kg, while those extracted by CaCl2 and oxalic acid after 1948 h were only 58% and 52% of the total amount of nonexchangeable K+ of the soils, respectively. In all soil samples, nonexchangeable K+ released by oxalic acid was less than that released by CaCl2, due to the high buffering capacity resulting from high carbonates in the soils. Potassium release rate in Elovich and Parabolic equations were significantly correlated with non-exchangeable potassium and some physical and chemical characteristics.  Based on high Coefficients of determination (r2) and low Standard errors (SE), Elovich, Power function, First order and Parabolic equations were selected as the best equations for prediction of K+ release from the soils.


S. Shakeri, S. A. Abtahi,
Volume 22, Issue 4 (Winter 2019)
Abstract

This research was carried out to assess the origin and clay minerals characteristics and their relationship with potassium forms in the calcareous soil of this region, with the humid climate conditions. Based on aerial photos and topographic maps, physiographic units were separated and soil sampling was done in each diagnostic horizon. The results showed that smectite was the main and dominant clay mineral in the study area. In well-drained pedons, the convincing process for smectite abundance seemed to be mainly the transformation of palygorskite and mica. According to the results, the exchangeable potassium in the surface horizon was higher than that of the subsurface horizons. The main reason for the higher level of exchangeable K in the soil surface, was more smectite and organic carbon. The results revealed that unlike exchangeable and non-exchangeable K, because of the suitable conditions like temperature and humidity in surface horizons, the relative mean of structural K in the surface soils was less than that in the subsurface. Also, since an increase in calcium carbonate resulted in a decrease in amount of clay and the amount of relative clay minerals (dilution effect), the amounts of exchangeable, non- exchangeable and structural K were decreased.

P. Khosravani, M. Baghernejad, A. Abtahi, R. Ghasemi,
Volume 25, Issue 3 (Fall 2021)
Abstract

Soil classification in a standard system is usually defined based on information obtained from properties and their variations in different map units. The aim of this study was to compare soil genesis and morphological characteristics in different landforms with WRB and Soil Taxonomy (ST) Systems. From nine studied profiles, six profiles were selected as representative profiles and dug in Colluvial fans, Piedmont plain, and Alluvial plain physiographic units, respectively. Then, the soils were classified according to the pattern of the two systems. Also, variation analysis of variance (ANOVA) and comparing means were used to quantify interested soil properties. The results of soil physio-chemical properties at different landform positions were significant based on analysis of variance of the effect of physiographic units and soil depth at the level of 1 %. Soil classification results based on WRB indicated that WRB were recognized four reference soil groups (RSG) included Regosols, Cambisols, Calcisols, and Gleysols at the first level of WRB classification in comparison of ST with recognizing two order Entisols and Inceptisols could separate more soils. The soils were located on the alluvial plain with a high groundwater level in the WRB due to the creation of restrictive conditions for root development in contrast to the ST called “Aquepts” in the suborder level but in a WRB is classified as the “Gleysols” RSG. On the other hand, ST, unlike WRB, used the Shallow criteria at the family level to describe the shallowness of soils and the limitations of root development. Generally, the efficiency of each system varies despite the differences in their structure and depending on the purpose of using them.

M. Abtahi, M. Khosroshahi,
Volume 27, Issue 4 (Winter 2023)
Abstract

Biological operations to combat wind erosion must be carried out in the calm bed of dunes, which is often challenging due to high-velocity winds. Therefore, the necessary precondition for stopping the movement of sand is to create obstacles in the path of their movement, protecting newly planted vegetation from wind damage and ensuring stability during the initial years. In this project, various methods of preventing wind erosion, including creating a windbreak to reduce wind speed below the erosion threshold and sand spraying to increase the wind threshold, were evaluated in the dunes of Abuzidabad, Kashan, under severe wind erosion. The windbreaks used include mesh with a percentage of 50% porosity in a checkerboard with dimensions of 2.5 * 2.5 m, and cottonwood harvested from cotton fields in a grid of 5 * 5 meters. The height and distance of the windbreaks were calculated using the wind threshold speed and the maximum wind speed of the region. Sand spraying was tested on dunes and clay-salt panes with 50% and 30% density. To compare the rate of soil displacement in the above and control treatments, graded wooden indicators up to a height of one meter of sediment traps were used. In addition, the effect of net windbreak on the percentage of successful establishment of the Holoxylon sp. plant compared to the control was investigated. In this study, the cost of each method was calculated separately and compared with the cost of spraying oil mulch. The results showed that 50% sand spraying, in addition to having the best performance in stabilizing sands and preventing the formation of dust, as well as stability, also has a lower implementation cost than other methods. Therefore, the 50% sand spraying method is introduced as the best method to stabilize and prevent erosion at the lowest cost and also environmental compatibility.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb