Search published articles


Showing 4 results for Ahadiyan

H. Goleij, J. Ahadiyan, M. Ghomeshi, H. Arjmandi,
Volume 18, Issue 69 (fall 2014)
Abstract

While the mass density current penetrates the stagnant fluid, a plunge point occurs. In this regard, the boundary of the dense fluid with ambient fluid is determined at the plunge point height. In this research, the hydraulic parameters of the dense flow and the bed slope of the stagnant fluid which have a significant effect on the plunge point have been investigated under the two turbulence models: the k- and the RNG at the Flow-3D model. To achieve the purpose of this research, a physical model was set up at the hydraulics laboratory of Shahid Chamran University (SCU), Ahwaz, Iran. Then, using the Flow-3D model with both the k- and the RNG turbulence model, the height of the plunge point was simulated according to the same experimental condition. Findings showed that the predicted depth under the RNG model is closer to the results of the physical model. For example, the k- and RNG model for the 12% slope can estimate the plunge point depth by 30% and 12.28% respectively more than the experimental data. However, for all the slopes, the k-e model can on average overestimate by 27% and RNG model 10.5% more than the results of experimental data. The statistical analysis showed that the RNG model predicts the plunge point depths with a satisfactory precision.


R. Sajadi Far, J. Ahadiyan,
Volume 20, Issue 75 (Spring 2016)
Abstract

In this research dense fluid discharge was experimentally investigated under the surface jet in the shallow acceptor. The investigated parameters were depth of the acceptor ambient, flow rate and the concentration of surface jet. In order to investigate the relationship between these parameters, a physical model experiments were performed in the hydraulic laboratory of Shahid Chamran University. The results showed that progressive length of the surface jet core is directly proportional to Froude number of fluid density, and is inversly proportional to fluid density concentration. Besides, the progressive length of the jet core increases with increasing the depth of the acceptor ambient. This length increase is due to the decrease of water surface tension. In average, increasing the depth of acceptor ambient twice, the progressive length will increase 38%, and its increasing three times, will increase progressive length of jet core 62%. Besides, in the relationship obtained for the progressive length of jet core R 2 is 0.94.


J. Ahadiyan, B. Mardasi,
Volume 22, Issue 1 (Spring 2018)
Abstract

Discharge of contaminants in the acceptor ambient has negative environmental impacts. Extremely shallow acceptor ambient conditions will have a significant impact on the diffusion of the contaminants flow. To achieve the effect of the hydraulic, geometric and environmental conditions of the contaminant flow in the acceptor ambient, an experimental model of surface draining was applied. The model consisted of a flume with 3.2 meters length, 0.6 meters width and 0.9 height. Accordingly, by considering three simple single drainers with the diameters of 1.2, 1.6 and 2.2 centimeters, a dense flow with 20, 40 and 60 g/L concentrations occurred in an acceptor ambient with H/d = 2. The results showed that equilibrium length was extremely decreased by increasing the concentrations; this was such that with increasing the concentration three times from 20 to 60 g/L, this length was decreased from 25 to 10. However,  based on  the results, it was found that the effect of  the changes of  the viscosity parameter over the relative length was significant, as its effect was high in all concentrations to 100; then it tended  to become a constant value.. In this regard, the effect of changes in the surface tension parameters over the relative length was investigated; the results showed that this parameter was always effective in the extremely shallow acceptor ambient at all stages from the beginning to the end of the  progress. It is important to note that this had a constant slope in all concentrations and surface tension had an effect on flow diffusion with a certain trend in all concentrations. In fact, surface tension in all concentrations reached to 5 after the equilibrium length and jet energy dissipation area.

H. Kheibar, S. M. Sajjadi, J. Ahadiyan,
Volume 24, Issue 3 (Fall 2020)
Abstract

Lopac gates, with the benefits of easy installation, automation and the ability to pass sediments and floating objects, are among the new structures considered for water level regulation and flow control in the irrigation canals. Converting the shape of the gate from a rectangular one to an elliptical one allows the flow rate to be increased by the same water level. In the present study, the effect of the sudden transition on the discharge and energy dissipation of the elliptical-lopac gate (ELG) in the submerged flow conditions was evaluated in the laboratory. The results showed that the dimensionless discharge and energy dissipation of the ELG with sudden transition to channel width conditions was decreased by 28 to 86% and increased by 11 to 35%, respectively. Finally, the statistical equations were presented to estimate the dimensionless discharge and energy dissipation of ELG by sudden transition under submerged flow conditions with a maximum error of 16%.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb