Search published articles


Showing 1 results for Arvanaghi

Z. Talebi, H. Arvanaghi,
Volume 22, Issue 4 (Winter 2019)
Abstract

Flow pattern around the bridge piers includes water surface profile, velocity profile, shear velocity, shear stress distribution, etc. In this research, the effects of the base shape along with scale effects on the flow pattern around the rectangular bridge piers were numerically calculated through "Fluent Software", using Horizontal Velocity Distribution (Vx) and Vertical Velocity Distribution (Vy) criteria. The results showed that in studying the horizontal component of velocity (Vx) for the rectangular bridge piers, the vortices activity radius was 8 times of the length of the pier, and the minimum channel width for vortices activity was 16 times of the length of the Bridge pier; also, the minimum channel length in front of the pier was 4 times of the length of the pier and behind which, it was 25 times more than the bridge pier. Finally, the minimum channel length for the vortexes activity was calculated to be 29 times more than the bridge pier length. Furthermore, for the vertical component of velocity, the flow pattern around the base of the bridge cannot be an appropriate parameter for checking the effects of the length and width of the channel.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb