Search published articles


Showing 7 results for Besh

A. Nik-Khah, B. Abeshet,
Volume 3, Issue 4 (winter 2000)
Abstract

Feed shortage is one of the most important characteristics of Iranian livestock industry. Therefore, the utilization of agricultural by-products in animal nutrition, especially for fattening animals, is of great importance. In order to study the effect of the four rations containing various levels of tallow (0, 2.5, 5, and 7.5%), on the performance of male Holstein calves (MHC), responding to the above treatments 1, 2, 3 and 4, twenty four MHC (191±32.1 kg) at age 6-7 months-old in a completely randomized design were used. The calves were fed individually for 195 days ad libitum.

Average daily gains (ADG) of the MHC fed diets 1, 2, 3 and 4 were 1.56, 1.61, 1.69 and 1.75 kg (P<0.05), respectively. Feed conversions (as DM) were 4.63, 4.31, 41.2 and 3.98 (P<0.05), respectively. Added tallow to the ration did not affect carcass, empty body weight (EBW), but increased warm carcass weight (P<0.05). The dietary treatments did not increase digestibility (D) of dry matter organic matter, crude protein and gross energy either, but decreased D of neutral detergent fiber and increased apparent crude fat (P<0.05).


S. Besharat, V. Rezaverdinejad, H. Ahmadi, H. Abghari,
Volume 17, Issue 65 (fall 2013)
Abstract

Different root water uptake models have recently been used. In this article, we use evapotranspiration data and soil water content data obtained from lysimeter measurements and root distribution in soil data obtained from olive tree to evaluate the accuracy of root water uptake models in predicting the soil water content profiles. Depth of lysimeter was 120 cm which was filled with clay-loam. Lysimeter recorded values of input and output of water and accurate value of evapotranspiration was also calculated. Soil water content distribution was measured using a TDR probe in lysimeter during the experiment. Feddes model with the root length density was used to account for the role of root distribution in soil. The flow equations were solved numerically with the measured evapotranspiration data as input, and the predicted soil water content profiles were compared with the measured profiles to evaluate the validity of the root water uptake models. The comparison showed that the average of relative error index for Feddes model was 10 %. Based on the results, about 90% of root uptake in olive tree happened at the depth of 40 centimeter
N. Besharat, A. Tajabadi Pour, V. Mozafari,
Volume 18, Issue 67 (Spring 2014)
Abstract

To study the effects of soil phosphorus (P) application on growth and water relations and nutrient concentration of pistachio seedlings (Badami-e-Zarand) under water stress, a greenhouse experiment was conducted. Treatments were arranged in a factorial manner as a completely randomized design with three replications. Treatments consisted of six P levels (0, 30, 60, 90, 120 and 150 mg P Kg-1 soil as H3PO4) and three irrigation intervals (2, 4 and 8 days). Results showed that as water stress increased, growth parameters significantly decreased. As irrigation interval was increased to 8 days, shoot and root dry weights, shoot/root ratio, leaf area and leaf number and stem height decreased. Photosynthesis parameters were significantly decreased by increasing water stress. Also, P and Zn concentrations decreased as irrigation interval increased. Analysis of variance indicated that P application had no significant effect on growth parameters, transpiration rate and photosynthesis. It seems that Olsen extractable P (5.35 mg kg-1 soil) was sufficient for optimum growth of pistachio seedlings and thus, no growth responses were observed from P application in this experiment. Application of phosphorus significantly increased P and decreased Zn concentrations.
N. Khanmohamadi, S. Besharat,
Volume 20, Issue 77 (Fall 2016)
Abstract

Accurate design of drip irrigation systems requires sufficient understanding of horizontally and vertically distribution of water flow in soil and modeling the wetting pattern dimensions created under the drip source. Field and laboratory activities are not suitable for this purpose considering their time and financial constraints and it is necessary to apply accurate software for determination of several equations in different situations. This research aimed to present simple models for calculation of wetting pattern dimensions in different discharges and structures in drip irrigation system. For this purpose, HYDRUS-2D model was implemented for four discharges in the same soil texture and different soil textures in the same discharge. The values obtained from running the software such as depth and maximum diameter of wetting pattern have been fitted with time values and corresponding equations were obtained. The results of statistical indices for all obtained equations (R>0.96, RMSE<2.12 and MAD<1.38) represent suitable accuracy of corresponding equations in determination of pattern dimensions under the drip source. The results also showed that Loamy Sand and Silt textures, respectively, have maximum and minimum depth and wetting pattern diameter.


R. Jamali, S. Besharat, M. Yasi, A. Amirpour Deylami,
Volume 22, Issue 3 (Fall 2018)
Abstract

The irrigation and drainage network of Zarrinehroud with an area of 65,000 hectares is the most important network of Lake Urmia basin, with the direct link to the lake. With the current crisis in the lake, an assessment of the existing network's performance is essential in the Urmia Lake Rescue Program. The purpose of this study was, therefore, to evaluate the transmission, distribution, and utilization efficiency and irrigation efficiency at the surface of the network. Three products were selected from the cultivar with the highest crop area (10% beet, 22% and 22%, and 38% wheat). The dominant method of irrigation was surface irrigation. At the network level, soil moisture in the field before and after irrigation, soil physical and hydraulic properties and water use volume for irrigation were measured. The results showed  that the average transmission efficiency in canals with the concrete coating of the network was about 79%, which was  in the range of 33% (in the  smaller channels) to 100% (in the  larger channels). The water distribution efficiency in the network was, on average, 76%, varying from 50% to 100%. Water use efficiency in the fields based on soil moisture balance analysis varied from 41% in the sandy loam soils to 66% for the clay texture. Based on the analysis of the data on the amount of harvest, production costs and product sales price, the water use efficiency (in kilograms of product per cubic meter of water used) varied from 0.4 for the  elderly hay to 5.1 for the  sugar beet. The amount of water used in this network (in Rials per cubic meter of water consumption) was between 2740 for alfalfa aged over 10 years and 6900 for wheat. It can be concluded that in the case of water constraints, wheat, sugar beet and alfalfa could be the most economic cultivar, respectively.

A. Khorsand, M. Bazaneh, S. Besharat, K. Zeynalzadeh,
Volume 22, Issue 4 (Winter 2019)
Abstract

Subsurface drip irrigation systems, compared to other irrigation systems (basin and furrow), enhance the delivery of water and nutrients directly into the root zone. The purposes of this study were to determine wetting front advancement in a subsurface drip irrigation and to compare the results with the HYDRUS 2D model simulation. In this study, the irrigation using T-Tape was carried out on a sandy-loam soil by two emitters at different irrigation times. The Wet moisture meter device was used to determine the soil water content. Evaluation of the simulated and measured soil water content was performed by using the adjusted determination coefficient (R2), relative error (RE), and the normalized root mean square error (NRMSE). Based on the results, the NRMSE of soil water content prediction for the emitters at the depths of 20 and 40 cm was calculated to be in the range of 10 to 19 and 10 to 13 percent, respectively. Also, RE for the emitters at depths of 20 and 40 cm was in the range of -16 to -5 and 8 to 11 percent, respectively. The average R2 for the emitters at depths of 20 and 40 cm was calculated to be 0.87 and 0.98, respectively. Also, five scenarios (F1, F2, T1, T2 and S1) were evaluated to assess the amount of water stored in the soil profile and water mass balance. The results indicated that the model could be used to predict the soil water content subsurface drip irrigation.

M. Najafi-Ghiri, H.r. Boostani, A. R. Mahmoodi, F. Dehghanpoor, M. Besh,
Volume 23, Issue 4 (winter 2020)
Abstract

Astragalus fasciculifolius is one of the most distributed plant species in the arid and semiarid regions of southern Iran. It may be well grown on roadside. This investigation was carried out to study the effect of road and its traffic intensity on the soil physicochemical properties and plant nutrients availability of roadside and to monitor the concentration of nutrients in the aerial parts of Astragalus fasciculifolius. Thirty soil and plant samples from roadside and 100 m distance from road were randomly collected and some physicochemical soil properties and nutrients availability were determined. Concentrations of the nutrients in the aerial parts of the plants were also determined. The results indicated that roadside soils had more sand and calcium carbonate equivalent than the adjacent lands. Soils of the main roadside had less K and more Fe, Mn, Zn and Cu than the adjacent lands; this difference in local road was observed only for Fe and Cu. Nutrients concentration in the aerial parts of the plants was affected by road, and P, K, Mn and Zn showed significant increases in the roadside plants. Concentrations of P, Fe, Zn and Cu in plants grown in main roadside and concentrations of Fe and Zn in plants grown in the local roadside were correlated with their contents in the soils. The effect of roads on soil properties change and nutrients availability may be related to the addition of road bed and emission of vehicles. Generally, it could be concluded that roadside soils had more suitable water and nutrition conditions for the growth of Astragalus fasciculifolius, as compared to the soils of the adjacent lands.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb