Search published articles


Showing 10 results for Bordbar

E. Gravandi, A. Kamanbeadst, A. R. Masjedi, M. Heidarnejad, A. Bordbar,
Volume 22, Issue 3 (Fall 2018)
Abstract

Rivers has long been regarded as one of the most basic human water supplies. If the topography, a morphology, water requirements conditions, etc. allow water to be transferred to gravity, the use of the dike can have a significant impact on the flow rate and the sediment input to Intake. Dike design needs to consider several parameters such as position, length, type, etc. Using a good design can increase the input flow rate and reduce the sediment entering it. In this study, to evaluate the dike impact on flow hydraulic conditions in the Intake with different situations, 30, 45, 60 and 90 degrees two simple L-shaped dikes in the upstream and downstream Intake and for five inlet flows (0.7, 1.12, 2.84, 5.04 and 6.23 Lit/s) were considered in the laboratory flume made by the author as a physical model to simulate the flow of the basin; then different effects of the dike on the hydraulic flow were studied. The results of the tests showed that the L-shaped dike in the upstream and downstream Intake in the internal arc flume increased the inflow flow rate into the Intake. Also, the best angle of deviation for the maximum flow entered the Intake angle of 60 degrees.

R. Amirjani, A. Kamanbedast, M. Heydarnejad, A. Bordbar, A. Masjedi,
Volume 22, Issue 4 (Winter 2019)
Abstract

In a pressure flushing method, when the water is discharged from the bottom outlet, after a period of flushing, a flushing cone will be formed at the front of the bottom outlet; the dimension of this cone is affected by several parameters such as outlet discharge flow, water depth of reservoir, and the kind of sediments accumulated in the reservoir. In this study, for the effect of cohesive & non-cohesive sediments, a physical model using specific dimensions was employed in order to develop the sediment evacuation method, and them a Semi-Cylinder structure in front of the lower drain was tested. The experiments were carried out using cohesive & non-cohesive sediments under two conditions: with the semi-cylinder and without it, at 90 experiments. The results indicated that the with discharge was increased, on i average, under both conditions and the volume of the score cone was increased. With decreasing the water depth, the flow mood was changed to free flushing, increasing the length and volume of the score cone. Semi-Cylinder form, on average, increased the volume of sedimentation and the length of sedimentation; this increase could be due to the formation of a pair of rotating Vortexes inside the Semi-Cylinder structure on both sides of the central axis of the valve.

H. Davodi, A. R. Masjedi, M. Heidarneja, A. Bordbar, A. A. Kamanbedast,
Volume 23, Issue 2 (Summer 2019)
Abstract

In this study, some experiments were carried out in a rectangular plexiglass flume to study the effect of the cable around a vertical tripod and two piles groups with different angles. In this research, a series of experiments were performed by placing a cylindrical vertical pileand two piles groups with different angles separately in two modes including with cable and without cable. The experiments were carried out using three types of cable with various diameters, number of threads and thread angles at a constant discharge in clear water. In each experiment, scour depth at the end of the test was measured; then, the scour depth was calculated in different conditions using the obtained data. The best configuration in the vertical pier and piers group was found for the cable-pier diameter ratio of 0.1, the thread angle of 15° and the triple threads. The result indicated that the scour reduction was enhanced as the cable diameter and threads were increased and the thread angle was decreased. So in the piers group of 28 and 38°, scour depth was reduced to about 43, 49 and 56%.

J. Rouzegar, A. A. Kamanbedast, A. Masjedi, M. Heidarnejad, A. Bordbar,
Volume 23, Issue 3 (Fall 2019)
Abstract

Morning glory spillway is one of the spillways that used to passing of flood from high to low level. This spillway is used in the reservoir dams that are placed in narrow valleys and in many locations with high slope in reservoir walls. In the Morning glory spillways, the vortex flow can reduce discharge, discharge coefficient and the performance of spillway. The zigzag spillway, as another type, is introduced as a proper option for compensating the problem of passing maximum possible flow rate, usually encountered by spillways. In the present study, the experimental results of a physical model were used to develop a hydraulic design with squire and circle inlet and analysis method for Labyrinth Morning Glory Spillway. The analysis of experimental data in circle and square inlet showed, that increase in length of spillway and zigzag, causes decrease in the discharge coefficient. Finally the result of effect spillway inlet on flow rate demonstrate that discharge coefficient in square inlet is more than circle, whereas without vortex breaker.

Gh. Safarinejadi, M. Heidarnejad, A. Bordbar, M. H. Pourmohammadi, A. Kamanbedast,
Volume 23, Issue 4 (Special Issue of Flood and Soil Erosion, Winter 2019)
Abstract

The use of free launch jets in flip bucket structures with associated submerged ponds, in the appropriate geological, and topographic and hydraulic conditions, could have significant economic and safety benefits. In this research, the downstream scour phenomenon of a flip bucket jet was investigated in free conditions, as well as in the presence of a trapezoidal and triangular slot in the coastal manner with different layout intervals at flow rate of 9, with a total of 45 experiments. The results of this study showed that the presence of the slot had significant effects on the depth and range of scour, so that the fit bucket jet with alternate triangular slots reduced the scour by about 12.7%, as compared to the no slot mode. Moreover, the maximum scour depth occurred in the bucket mode with the alternate trapezoidal slots in the more favorable interval than the rest of the models. Then, the results were compared with several empirical formulas and Veronese A relation showed closer results to the actual values.

A. Saki, A. A. Kamanbedast, A. Masjedi, M. Heidarnejad, A. Bordbar,
Volume 23, Issue 4 (Special Issue of Flood and Soil Erosion, Winter 2019)
Abstract

After Hamidieh Diversion Dam near the city of Hamidieh, Karkheh River is divided into two streams known as Hufel and Nissan. At the lower flow rates, Nissan makes up a greater share than Hufel due to the steeper slope of the former. This study attempted to construct a hydraulic structure to appropriately divide water flow in Hufel. In a laboratory experiment, a flume with a 90-degree bend was used at Islamic Azad University of Ahvaz. Various experiments were conducted at different widths and heights. Furthermore, this model was simulated through CCHE2D, the results of which were compared against those of physical and mathematical models. The results indicated that the weir height increased the deviation flow percentage to the Hufel stream due to rising water level. Moreover, the deviation flow percentage to Hufel was declined as the weir width was increased due to falling water level. At Hufel, the installation of rectangular weir in different dimensions yielded the minimum of 34.3% and the maximum of 61.5% increase in the flow rate. In the normal mode without any weirs installed, however, there would be an increase in the flow rate, as compared to the mode where a weir has been installed. This can be associated with the flow controlled by the weir. On average, the deviation flow rate was increased by 2.8% in the weir mode and 7.7% in the weir-less one. An increase in the Froude number from 0.21 to 0.38 led to a lower average deviation flow rate by 19.3%. Moreover, the results of the simulation through CCHE2D were demonstrated to be largely similar to those of physical model experiments. However, an increase in the Froude number did not lead to a decline in the deviation flow rate (i.e. it remained constant). This trend was inconsistent with the results of the physical model.

S. A. Banishoaib, A. Bordbar, A. A. Kamanbedast, A. Masjedi, M. Heidarnejad,
Volume 23, Issue 4 (winter 2020)
Abstract

A ‘spillway’ is a structure used to provide the controlled release of flood water from upstream into downstream area of a dam. As an important component of every dam, a spillway should be constructed strongly, reliably and efficiently to be used at any moment. Labyrinth and stepped spillways are presented as appropriate modifications to those spillways hardly capable of managing the maximum potential discharge. Owing to their nonlinear crests for a given width, labyrinth and stepped spillways have a larger discharge rate than linear- crest spillways at an identical height. Compared to other energy dissipaters, the combination of stepped and labyrinth spillways is known as a very strong energy dissipater. In the following part, the combination of these two structures and their dimensional change for increasing the water- energy dissipation are addressed. To conduct this study, an experimental flume with a 90- degree bend in the Islamic Azad University of Ahwaz was used. In total, 90 experiments were conducted on three different labyrinth- shape stepped spillway models with two different lengths, three different widths, and five different discharges. Analysis of the results showed a greater energy loss reduction in triangular rather than rectangular or trapezoidal labyrinth- shape stepped spillways. In addition, energy loss was greater in labyrinth spillways with two cycles than those with one cycle. Energy loss was increased by raising the Froude number from 0.05 to 0.1; in contrast, energy loss was decreased with increasing the Froude number from 0.1 to 1.0, which was due to the submergence of steps, a decrease in the roughness of steps and an increase in the intensity of aeration.

A. R. Bahrebar, M. Heidarnejad, A. R. Masjedi, A. Bordbar,
Volume 25, Issue 2 (Summer 2021)
Abstract

The combination of a labyrinth weir with an orifice is a proper solution for floating material to pass over the weir and transfer sediment through the orifice. Additionally, creating a slot in the overflow wing leads to higher discharge. This study examined four discharges (5, 10, 15, and 20 liters per second) with channel width and height of 30 and 40 cm in trapezoidal-orifice, square-orifice, and triangular-orifice labyrinth weirs in the laboratory and using Flow3D with RNG k-epsilon (k-ε) turbulence model, the results were compared with one another. Comparing the discharge flow over weirs and measuring the discharge coefficient among the mentioned models showed that the triangular-orifice labyrinth weir had the highest discharge rate. Moreover, the increased Ht/P ratio (Ht represents total hydraulic head; P denotes weir height) for all models resulted in the increased discharge coefficient. Due to the efficiency of this type of weirs, the highest discharge coefficient was obtained at low Ht/P ratios. At lower ratios, since there was free flow, the coefficient of weir discharge increased, and as the ratio increased, the weir was partially submerged. Furthermore, for the weir design, the best Ht/P ratio was between 0.13 to 0.41, and the maximum discharge coefficient (Cd = 1.2) was within this range.

M. Dorfeshan, A.r. Masjedi, M. Heidarnejad, A. Bordbar,
Volume 27, Issue 3 (Fall 2023)
Abstract

Piano key overflows have a high discharge capacity. Proper design of these overflows requires sufficient accuracy in predicting the type of overflows. In this study, experiments were performed in a rectangular laboratory flume made of Plexiglas to investigate the effect of the relative length and width of the two-cycle piano switch overflow crest on the discharge coefficient. In present research, the flow intensity coefficient was investigated by installing a rectangular piano switch overflow with relative crest lengths of 0.8, 1, and 1.2 and relative crest widths of 0.2, 0.3, and 0.4 in 10 flow intensities in the channel. The results of this study showed that by increasing hydraulic load, the flow intensity coefficient first increases and then decreases. Also, by increasing the relative length of the crest by 50%, the current intensity coefficient increases by 43% in the overflow. Increasing the relative width of the overflow crest by 50% increases the current intensity coefficient by 25% in the overflows. Also, an equation was presented to determine the maximum relative scour depth, and the correlation coefficient of the results of this equation with the laboratory results is about 0.90.

M. Sehat, A. Bordbar, A.r. Masjedi, M. Heidarnejad,
Volume 27, Issue 4 (Winter 2023)
Abstract

Today, abutments disrupt the normal flow of rivers and cause scouring and erosion of sedimentary materials around them, creating holes and resulting in much damage every year. Researchers have proposed various methods to reduce the power of water erosion. One of the essential methods in this regard is creating slots in abutments. Since the expansion of the scour hole endangers the stability of the bridge structure, this study examined the effect of slot dimensions in the support on the scour hole dimensions. The findings demonstrated that the presence of slots in abutments effectively reduces the dimensions of scour holes. With the slot, the volume of the scour hole can be reduced by up to 50%. Furthermore, as the relative speed of scouring increases by 75%, the depth of the scour hole also increased up to 140%. An increase in slot depth leads to a decrease in scour hole depth of up to 85%.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb