Search published articles


Showing 5 results for Egdernezhad

N. A. Ebrahimipak, A. Egdernezhad,
Volume 23, Issue 1 (Spring 2019)
Abstract

Sugar beet is one of the most important agricultural crops and its yield depends on irrigation water. Due to the impossibility of assessing the effect of all water amount strategies on sugar beet yield, it is necessary to use crop models such as WOFOST, AquaCrop and Cropsyst. In order to achieve this goal, a set of data collected from Shahrekord’s Agricultural Research Station were used. Treatments consisted of irrigation water amount (in five levels: E0: 100%, E1: 85%, E2: 70%, E3: 55%, and E4: 30%) based on crop evapotranspiration in different growth stages (T1: initial, T2: T2: mid-season, and T3: late season). The values of RMSE statistical criteria for the results of AquaCrop, WOFOST and CropSyst simulation were equal to 0.57, 0.68, and 0.26 ton.ha-1, respectively. NRMSE results were also obtained to be 0.11, 0.13, and 0.05 ton.ha-1 for the mentioned crop mpdels, respectively. The results of the EF criteria revealed that CropSyst (0.91) had better efficiency, as compared to AquaCrop (0.62) and WOFOST (0.47). Regarding the results, it is suggested to use CropSyst to simulate sugar beet yield in similar conditions.

M. A. Ansari, A. Egdernezhad, N. A. Ebrahimipak,
Volume 23, Issue 4 (winter 2020)
Abstract

This study was conducted to evaluate AquaCrop for the simulation of potato yield and water use efficiency (WUE) under different water stress values at five levels (E0, E1, E2, E3 and E4, indicating 100, 85, 70, 50 and 30 percent of crop water needed, respectively) in three times during growth cycles (T1, T2, and T3, indicating 50, 100, and 150 days after sowing, respectively). The results showed that AquaCrop had overestimated and underestimated error for the simulation of yield and WUE, respectively. Based on RMSE and NRMSE values, the errors for yield and WUE were acceptable. The maximum and minimum error were also 0.3 (E1T3) and 3.15 (E1T2), respectively. The results obtained for WUE showed that the maximum and minimum were 0.53 (E3T2) and 0.03 (E4T2), respectively. The average differences between simulated and observed results (ADSO) of WUE for E1, E2, E3 and E4 were 0.24, 0.25, 0.19, and 0.44 ton.ha-1, respectively; the ADSO of yield for T1, T2, and T3 was 0.19, 0.36, and 0.22 ton.ha-1, respectively. Therefore, AquaCrop showed a high error for WUE when water stress was increased and crop was in its initial crop growth.

A. Sarkohaki, A. Egdernezhad, S. Minaei,
Volume 25, Issue 1 (Spring 2021)
Abstract

Crop models evaluationin agriculture has been done by researchers. It helps them to determine the most appropriate crop model for the planning and simulation of crop response in different areas. Using can lead time and cost saving, helping to evaluate the effects of different situations on the crops yield, biomass and water use efficiency (WUE). Given the importance of the subject, this study was conducted for the accuracy and efficiency evaluation of AqauCrop and SWAP under three irrigation types (D: sprinkler irrigation with saline water, F: sprinkler irrigation with saline and fresh water, and S: surface irrigation) and five water qualities (S1: 2.5, S2: 3.2, S3: 3.9, S4: 4.6 and S5: 5.1 dS.m-1). NRMSE results showed that the accuracy of AquaCrop for the simulation of yield, biomass and WUE was 0.07, 0.09 and 0.07, respectively. For SWAP, these were 0.12, 0.04 and 0.13, respectively. According to EF, AquaCrop results for above-mentioned parameters were 0.60, 0.90 and -4.4, and SWAP results were 0.74, 0.73 and -2.0, respectively. So, AquaCrop accuracy and efficiency were better than those of SWAP for the simulation of corn yield and biomass.

M. Safavi, A. Asareh, M. Khorramian, D. Khodadadi Dehkordi, A. Egdernezhad,
Volume 26, Issue 1 (Spring 2022)
Abstract

The present research was conducted to determine water stress tolerance and water productivity (WP) of 5 alfalfa cultivars as a split-plot design in a randomized complete block with 3 replications in the Safiabad Agriculture and Natural Resources Research Center (SARRC) with Silty clay loam soil texture during 2018-2019. The main plot was 4 levels of water irrigation depth (including 25, 50, 75, and 100% water requirement supply) with a constant irrigation cycle and the sub-plot was the five alfalfa cultivars (Baghdadi, Yazdi, Nikshahree, Omid, and Mesasirsa). Two-year data on forage yield and WP for six harvests (from June to November) were analyzed by SAS software. The results showed that the wet and dry forage yield decreased by applying water stress and the percentage of dry forage increased. The highest yield of dry matter (12.4 tons ha-1) and WP of dry forage (0.94 kg m-3) were obtained from 75% water requirement supply treatment. Baghdadi genotype with wet and dry forage yield 39.1 and 10.7 tons ha-1, respectively, and the WP of dry forage 0.9 kg m-3 was higher than other genotypes. However, the Yazdi genotype had the lowest yield of wet and dry forage (30.3 and 8.5 tons ha-1, respectively) and dry forage WP (0.75 kg m-3). Therefore, the Baghdadi genotype with a 75% water requirement supply is recommended for similar conditions to the climate of Northern Khuzestan to increase water productivity.

M. Eskandari, M. Heidarnejad, A. Egdernezhad,
Volume 27, Issue 3 (Fall 2023)
Abstract

The formation of vortices behind the gates of diversion dams is an operational challenge. Such vortices lead to vibration and corrosion in the gate, reducing the lifetime and raising the operational cost of the dam. This study investigated these vortices and their formation. It was found that the gate or cutoff wall was not the only explanation for the vortices; the closed side gates also contribute to vortex formation. Furthermore, an increase in the gate width reduced vorticity; the vortex size experienced a 200% reduction as the gate size increased by 200%. The cutoff wall diameter was another determinant. An increase in the cutoff wall diameter raised vorticity. The vortices increased by 50% as the wall diameter increased by 150%.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb