Search published articles


Showing 3 results for Farzi

M. Boustani, F. Mousavi, H. Karami, S. Farzin,
Volume 23, Issue 4 (Special Issue of Flood and Soil Erosion, Winter 2019)
Abstract

River discharge is among the influential factors on the operation of water resources systems and the design of hydraulic structures, such as dams; so the study of it is of great importance. Several effective factors on this non-linear phenomenon have caused the discharge to be assumed as being accidental. According to the basics the chaos theory, the seemingly random and chaotic systems have regular patterns that are predictable. In this research, by using methods of phase space mapping, correlation dimension, largest Lyapunov exponent and Fourier spectrum power, a period covering 43 years of Zayandehrud River discharge (1971-2013) was evaluated and analyzed based on the chaos theory. According to the results, the non-integer value of the correlation dimension for Eskandari and Ghale Shahrokh stations (3.34 and 3.6) showed that there was a chaotic behavior in the upstream of Zayandehrud-Dam Reservoir. On the other hand, in the Tanzimi-Dam station, the correlation dimension curve was ascending with respect to the embedding dimension, showing that the studied time-series in the downstream of Zayandehrud-Dam Reservoir was random. The slope of the Lyapunov exponent curve for Eskandari, Ghale Shahrokh and Tanzimi-Dam stations was 0.0104, 0.017 and 0.0192, respectively, and the prediction horizon in the chaotic stations was 96 and 59 days. The non-periodical feature of time series was studied by using the Fourier spectrum power. The wide bandwidth, besides other indices, showed that river discharge in the upstream stations of Zayandehrud Reservoir was chaotic.

A. Kheyrandish, S. F. Mousavi, H. R. Ghafouri, S. Farzin,
Volume 23, Issue 4 (Special Issue of Flood and Soil Erosion, Winter 2019)
Abstract

In this research, conjunctive and integrated operation of surface and ground water resources of Behbahan plain (Maroon dam's reservoir and existing wells, respectively) was investigated. Simulation of allocation of water demands in this basin was performed by four scenarios, using WEAP software: 1) current conditions (M1), 2) reference scenario for the next 16 years (M2), 3) land development scenario (M3), and 4) optimal scenario (M4). The optimal scenario was performed with multi-purpose linear programming. Based on the results, drinking water demands was satisfied completely in all scenarios. Under the scenario of current conditions, all agricultural demands, except the traditional rights, supplied more than 50% in the low-flow months. In the reference scenario, water supply for agricultural demands in some months was less than 100% and even in June and July, the water supply for North and South Irrigation networks of Behbehan plain was less than 10%. In the land development scenario, agricultural demands of all irrigation networks, except Ramhormoz network, satisfied more than 90% in all months. The optimal scenario performed better than other scenarios for minimum Maroon River flow and volume of storage in the reservoir. Comparison of the four scenarios in satisfying the environmental needs also revealed that the optimal scenario performed better than the other three scenarios in the spring months. However, it provided less than 100% of water needs in the whole year. Comparison of the four scenarios also showed that the first two scenarios had the highest reliability percent in the Jayzan-Fajr, South Behbahan and North Behbahan Irrigation Networks and traditional water rights. Frequency of storage-time-probability from the storage volume in the optimal scenario also showed that maximum storage lifetime of the lasting storage volume was 558 million m3 (which was equal to half of the volume of Maroon dam’s reservoir) with the highest probability (60%).

A. Esmali Ouri1, P. Farzi, S. Choubeh,
Volume 26, Issue 3 (Fall 2022)
Abstract

Planning and providing appropriate tools to reduce the adverse effects of natural hazards including floods is inevitable. Achieving the above goal depends on having sufficient and accurate knowledge and information about the vulnerability of different ecosystems (watersheds) to various destructive factors. Vulnerability assessment by identifying potential stresses and disturbances (natural and man-made) as well as estimating the sensitivity of watersheds allows for predicting the effects and selecting appropriate solutions for the sustainable management of these ecosystems. Therefore, this study has been designed to identify and rank vulnerable sub-watersheds to floods in the Ardabil plain, taking into account social, economic, infrastructural, and ecological dimensions. First, the indicators and criteria of each dimension were identified taking into account the conditions prevailing in Ardabil plain. Then, information and data on climatic, hydrological, demographic, economic, infrastructure, and land use were obtained from relevant authorities. Then, the mentioned criteria were standardized and the weight according to their importance was calculated based on the BWM method the data obtained from this stage were performed using the TOPSIS technique to rank flood vulnerability for different sub-watersheds in Ardabil plain for the period 2007-2017. Finally, a map of Ardabil's plain vulnerability to floods was prepared and presented. According to the results, the criteria of building density, rainfall, population density, and the unemployment rate were the most important criteria of vulnerability and among the studied dimensions, the infrastructure dimension is too significant in flood vulnerability in Ardabil plain. Based on the comprehensive vulnerability map, sub-watershed 7 in Ardabil plain was identified as the most vulnerable sub-watershed in the study area.



Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb