Search published articles


Showing 15 results for Ghanbari

A. Ghanbari, M. Maftoun, N.a. Karimian,
Volume 3, Issue 4 (winter 2000)
Abstract

Different Extractants have been proposed to assess available P in different soils. Olsen method is widely used to determine available P in calcareous soils of Iran. However, it has not been compared adequately with other extractants. The main objective of this experiment was to compare this procedure with some other methods. Thirty nine calcareous soil samples from Fars Province with different physico-chemical characteristics were examined for available P by nine extractants. Furthermore, the effects of four P levels (0, 50, 100, 200 µgPg-1 soil) on growth, P concentration and P uptake by corn were studied in a greenhouse experiment using 20 soil samples. The results indicated that the amount of extractable P decreased in the order, anion-exchange resin > Colwell > Morgan > Olsen > Bray P1 (1:50) > Soltanpour & Schawb > EDTA > Bray P1 (1:7) > Water. The amounts of P extracted by all methods, except that by Bray method, showed significant correlation. However, the correlation coefficients between resin, Olsen, Colwell and water were higher than the others. Regression analysis showed that P extracted by all methods, except Bray, was affected by organic matter and native Zn. Moreover, P removed by Bray method was decreased with an increase in calcium carbonate equivalent. Correlation between top dry weight, relative growth and P uptake and P extracted by resin, Colwell, Olsen and water were highly significant. Although the correlation coefficients between growth parameters and P extracted by Morgan and Soltanpour & Schawb were significant, they were of lower magnitude. Plant phosphorus concentration showed significant correlation with P extracted by Olsen and Colwell methods. In general, resin, Olsen and Colwell methods seem to be appropriate extractants for available P in the present study. However, to select the appropriate extractants, more research is needed.
A. Ghanbari, J. Abedi Koupai, J. Taie Semiromi,
Volume 10, Issue 4 (winter 2007)
Abstract

A field study was conducted at the Zabol Agricultural Research Center during the years (2003-2004) to investigate the effect of irrigation with treated municipal wastewater on the yield and quality of wheat and some soil properties. Irrigation treatments were: T1: Irrigation of wheat with well water during entire period of growing season T2: Irrigation of wheat with well water until the begging of flowering stage, and irrigation with wastewater in every other turns of irrigation T3: Irrigation of wheat with well water until the beginning of booting stage, and irrigation with wastewater in every other turns of irrigation T4: Irrigation of wheat with well water until the begging of tilling stage, and irrigation with wastewater in every other turns of irrigation and T5: Irrigation of wheat with wastewater during entire period of growing season. A complete randomized block design with four replications was adopted for this experiment. The soil was sandy loam with no limitation for internal drainage. Chemical and physical aspects of soil were measured during the experiment. Grain yield, yield components and chemical composition of wheat grain were also measured. The results showed that yield of wheat and total biomass production were statistically significant in T3, T4 and T5 compared with the control treatment. Plant height, width and length of flag leaf, numbers of fertile tillers, length of panicle, numbers of grains per panicle and weight of 1000 grains were also statistically significant with the control treatment. Percentages of protein were statistically different among various irrigation treatments. No significant changes in accumulation of heavy metals in soil and plant grains were observed. The increase of SAR, ECe, O.C% and total nitrogen in the T4 and T5 were statistical significant compared with the control treatment. In summary, for sustainable use of Zabol municipal wastewater, the growth stages of wheat should be irrigated with municipal wastewater and other growth stages should be irrigated with nonsalinty water, so that the maximum yield is obtained and soil salinitisation and sodication is prevented.
S. Esmail Khanian, A. Negati Javaremi, F. Afraz, P. Daneshyar, S. Ghanbari,
Volume 11, Issue 41 (fall 2007)
Abstract

In order to identify polymorphic microsatellite markers and evaluae genetic variation within Baluchi sheep population, nineteen microsatellite loci were studied. Whole Blood samples were collected from 156 sheep at north eastern animal breeding station of Iran (Abbasabad-Mashhad). DNA was extracted by salting-out procedure with some modifications. Polymerase chain reactions were successfully done except for UNC5C locus. PCR products were electrophoresed on 8% denaturing polyacrylamide gels stained according to rapid silver staining procedure. The genotype and allelic frequencies were calculated by direct counting and used for estimating of different polymorphism and genetic variation criteria. This population wasn't at Hardy-Weinberg equilibrium except for OarAE101 locus (P<0.005). Heterozygosity (gene variation) ranged from 0.1 to 0.93. BULGE5E and BM1329 loci were monomorphic. In conclusion, this investigation showed high polymorphism at the studied loci, so they could be used in future studies.
M. Ghanbari , M. Shahedi,
Volume 12, Issue 43 (spring 2008)
Abstract

Baking is obviously one of the most important stages of bread production. Baking time and oven temperature have greatest effects on bread quality. The aim of this study was to investigate the effect of baking time and temperature on bread quality and its shelf life. In this study, the effect of three rates of oven temperature (top and under bread surface) and baking time levels on bread quality and its shelf life was investigated. Baking temperature and time were 300 and 280 °C for 3 minutes and 20 seconds, 300 and 350 °C for 2 minutes and 30 seconds and 350 and 380 °C for 2 minutes respectively. Soluble starch and staling factors of the samples were measured. The data was statistically analyzed by complete randomized design and comparison was made between the means via Duncan,s multiple range test at 5% level. The results showed that the bread baked in various time–temperature conditions were different in moisture content. The bread baked at lower temperature and longer time had the lowest moisture. Also, the result showed that the amount of soluble starch increased by increasing the baking time and decreasing the baking temperature. The bread baked in various baking conditions showed significant differences in staling rates. Lower baking time and higher baking temperature caused the lowest bread staling rates.
M. Ghanbari , M. Shahedi,
Volume 12, Issue 43 (spring 2008)
Abstract

Effect of semihydrogenated vegetable oil (shortening) and sodium stearoyl lactylate (SSL) on retarding Barbari bread staling was investigated in this study. Three levels of 2, 3 and 4 percent shortening and SSL in two levels of 0.5 and 1 percent of flour were used in this research. Treatments included control sample (without shortening and SSL), bread with only shortening, bread with only SSL, and bread with 0.5 percent SSL and 3 percent shortening. Organoleptic properties and staling factors of the samples were determined. The data was statistically analyzed by complete randomized design and means comparison was done by Duncan’s multiple range test (5% level). The results showed that the breads containing SSL and shortening were significantly different in organoleptic properties, and samples with 0.5 SSL and 3 percent shortening had the highest quality. The results of staling test showed that samples with 0.5 percent SSL and 3% shortening had the lowest staling rates.
M Babaeian, M Haydari, A Ghanbari,
Volume 12, Issue 46 (fall 2009)
Abstract

In order to study the effects of foliar micronutrient application under water stress at three stages of growth on proline and carbohydrate concentrations, grain yield and yield components of sunflower (Alster cultivar), a field experiment in split plot design with three replications was conducted in 2007. Alster cultivar was considered under water stress at three stages of growth (heading, flowering and grain filling) as main plot and seven micronutrient treatments, Fe, Zn, Mn, Fe+Zn, Fe+Mn, Zn+Mn and Fe+Zn+Mn, as sub plots. Results showed, water stress at three stages of growth significantly decreased grain yield, biological yield, 1000 weight seeds, cap diameter and cap weight of sunflower (Alster cultivar). The impact of water stress was more pronounced when applied at grain filling. Use of foliar micronutrient increased grain yield in water stress. On the other hand, use of Mn foliar application had the highest positive effect on yield components and grain yield. Free proline and total soluble carbohydrate concentration were increased under water stress at all of the three stages of growth. The highest concentration of these two components was found on the flowering stage. Foliar micronutrient also increased accumulation of the two components.
A Jalali, M Galavi, A Ghanbari, M Ramroudi, M Yousef Elahi,
Volume 14, Issue 52 (sumer 2010)
Abstract

Using treated wastewater led to increasing crop yield, but it may causes heavy metals accumulations and also their toxicity in soil and plant. In order to investigate the effects of wastewater on yield, forage yield components, and heavy metals concentrations in stem and leaf of sorghum, an experiment was conducted in the agricultural Research Institute of Zabol University in 2006-2007, using a randomized complete block design with four replication. The irrigation treatments were: 1) well water for whole growing season as control (T1), 2) well water for all growing season along with NPK application (T2), 3) wastewater during the first half of growing season (T3), 4) wastewater during the second half of growing season (T4), 5) wastewater and tapwater alternately (T5) and 6) wastewater for whole growing season (T6). The results showed that irrigations with wastewater and well water alternately and wastewater for whole growing season produced the maximum forage yield and the maximum heavy metal accumulation in plant organs observed by irrigation with wastewater for hole growing season, and wastewater and well water alternately. There was significant increase between T5 and T6 relative to control and other treatments. The elements concentration such as Cu, Pb and Fe in leaf was more than stem, but Zn and Ni concentration in stem were more than leaves. There were no significant differences for Mo and Cr concentration between stem and leaf. Forage yield in T6 and T5 relative to T2 were increased 38.96 and 51.95 percent respectively. In all irrigation treatments the amount of elements and heavy metals in sorghum were lower than standard limits. Based on the results, alternative irrigation method (T5) is recommended for forage sorghum production.
H. R. Fanaei, M. Galavi, M. Kafi, A. Ghanbari Bonjar, A. H.shirani-Rad,
Volume 15, Issue 57 (fall 2011)
Abstract

In order to assess the effect of drought stress and various levels of potassium on solutes accumulation and chlorophyll of canola and Indian mustard, a field experiment was conducted in a factorial design based on randomized complete block design with three replications including three irrigation regimes (I1=irrigation after 50% depletion of soil water(control),I2 =irrigation after 70% water depletion and I3 =irrigation after 90% water depletion), two species (Hyola 401 hybrid of canola and landrace cultivar of mustard) and three levels of potassium fertilizer (K1=0 ,K2=150 and K3= 250 kg.ha-1 K2SO4 ) at Agricultural and Natural Resources Research Center of Sistan in 2008-2009 cropping season. Water stress increased proline and soluble carbohydrate accumulation in the leaves of Brassica sp. In non stressed condition (control) in different growth stages, proline was lower than water-stressed plants and Leaf proline content decreased significantly after irrigation. Mustard landrace showed higher capability for accumulating assimilates such as proline, soluble carbohydrates and potassium than hybrid Hyola 401. Water stress decreased the amount of chlorophyll a, b and total leaf chlorophyll, but Potassium application caused an increase in the mentioned parameters. The highest content of chlorophyll pigments was observed at flowering stage. Potassium application caused a decrease in proline and an increase in soluble carbohydrates concentration in the leaf under water stress condition. There was a negative correlation between grain yield and proline content and soluble carbohydrates, but grain yield was positively correlated with chlorophyll, a, b. It was concluded that osmotic adjustment can be an important mechanism for Brassica species under water stress conditions and that organic and inorganic compounds such as proline, soluble carbohydrates and potassium play key roles in this regard.
M. R. Asgharipour, A. Ghanbari Bonjar, H. Azizmoghadam, A. R. Sirousmehr, M. Heidari,
Volume 16, Issue 62 (Winte - 2013 2013)
Abstract

In this study the effects of irrigation with raw or diluted municipal effluents along with foliar micro-nutrients fertilizer spray were examined on the growth, yield and mineral nutrient in foxtail millet plants. The experimental design was a split-plot with three irrigation sources (namely raw sewage, 50% diluted sewage and well water) as main-treatment and four combinations of Mn and Zn foliar spraying as sub-treatments, which were applied with three replications. The experiment was conducted at the Zabol University research farm during 2009. The applied municipal effluents contained higher levels of macro and micro-nutrients than the well water. The experimental results indicated that irrigation of plants by raw or diluted sewage improved the measured growth parameters and productivity of foxtail millet plants. In addition macro and micro-nutrients concentrations were improved. These improvements were attributed to the presence of high levels of essential nutrients such as nitrogen, phosphorus, and organic matters in wastewater. Manganese and Zn supplied through sewage water alone were not able to raise the productivity of millet to the level obtained through fertilizers at the recommended level, which indicated that additional nutrients through fertilizers are required to obtain higher productivity of millet under sewage farming. Despite the differences in nutrients concentration among different irrigation water sources, the micro-nutrients foliar spray did not affect concentration of macro and micro-nutrients in foxtail millet plant. Overall, the results suggest that municipal sewage could be efficiently utilized as an important source of water and nutrients in growing foxtail millet Sewage water irrigation did not have any appreciable harmful effect on crop productivity.
M. Shamsalddin Saied, A. Ghanbari, M. Ramroudi, A. Khezri,
Volume 21, Issue 1 (Spring 2017)
Abstract

Cover crops, conservation tillage systems and organic fertilizers have played an important role in maintaining or enhancing soil quality. In order to assess the combined effects of these techniques on soil quality an experiment was conducted as split Plot experiment based on randomized complete block design with three replications at Shahid Bahonar University of Kerman in 2011-2012.
     The method of return of cover crops to soil included reduced tillage (disc) and no-till (herbicide glyphosate + cutting) as the main factor and manure application management included cover crops (wheat, canola and peas) without the use of urea, cover crops with a consumption of 25 t/ha of manure, Cover crop with 75 kg of urea and fallow treatments (without cover crop) as subplots. The results showed that the highest concentration of nutrients (except N and P concentrations in the plant), the nutrient yield and biomass of cover crops belonged to wheat treated with urea fertilizer. Soil properties such as bulk density, pH, organic matter and soil nutrient concentrations (nitrogen, phosphorus and potassium) were significantly affected by fertilizer management and the method of return of cover crops to soil (except pH) and soil organic matter content and nutrient concentration were affected by their interactions. In wheat cover crop treatments with urea with %27.53 reduction in bulk density, %20.88 increase in the porosity, organic matter 2.4 times and nitrogen 1.5 times compared to the fallow treatment was the best treatment that wasn’t significantly different from the wheat treated with manure in low- tillage system. Wheat treated by manure had the highest phosphorus that was 3.5 times of the phosphorus concentration in the fallow treatment. So, in order to develop sustainable agriculture, reducing the use of synthetic fertilizers and environmental protection, the wheat cover crop treatments with manure and low- tillage cropping systems would be appropriate in Kerman.

A. Ghasemi, A. Ghanbari, B. A. Fakheri, H. Fanaie,
Volume 21, Issue 3 (Fall 2017)
Abstract

In line with sustainable agriculture development, an experiment was conducted including tillage as the main factor in two conventional systems (plowing and mixing fertilizer with soil) and no tillage (leaving residuals of green manure and direct corn sowing). The fertilizer resources were T0: control, T1: barley green manure without chemical and manure fertilizers, T2: barley green manure with full use of the recommended chemical fertilizer (NPK) to barley containing urea, super triple phosphate and potassium sulphate respectively as 165, 90, and 75 kg/ ha, T3: green manure with two -third residual of chemical fertilizer for barley and a third of the residual to corn, T4: green manure with one- third chemical fertilizer for barley and two-third for corn, T5: barley green manure mixed with 50% manure and 50% chemical fertilizer, and T6: green manure with 40 tons of manure used as a sub-plot in the split plot and in completely random blocks with three replications for two crop years ( 2013-2014) at the Agricultural Research Station, Sistan. The results showed that in comparison with no-tillage, the conventional tillage resulted in a significant increase in grain yield, the contents of nitrogen, phosphorus, potassium and soil organic carbon, bulk density and moisture content of the soil decreased in the conventional tillage. Sources of fertilizer (organic and chemical fertilizers) significantly increased soil organic carbon, nitrogen, phosphorus, potassium, and soil moisture content. The pH and soil bulk density factors decreased after using manure sources. Interaction tillage in the fertilizer sources showed that in the conventional tillage and Treatment T5 (mixture of manure, green and chemical fertilizers) the highest yield of corn was obtained with an average of 8471 kg/ha. The results of this experiment reported that using conventional tillage system with mixture of 50% manure, green and chemical fertilizers can increase corn grain yield, provide the dynamics of nitrogen, phosphorus, potassium, organic carbon, and improve soil bulk density and soil pH.
 


F. Haghnazari, M. Ghanbarian Alavijeh, A. Sheini Dashtegol, S. Boroomand Nnasab,
Volume 25, Issue 1 (Spring 2021)
Abstract

Changes in soil infiltration cause changes in irrigation efficiencies; therefore, estimating it in calculating irrigation efficiencies provides a more accurate estimate of irrigation performance indicators. In a study conducted on ARC2-7 farm in Amirkabir agro-industry in the 2010-2011 crop year, during four irrigations; two furrows were selected in terms of uniform infiltration and variable infiltration with a length of 140 and a width of 1.83 m. In the furrow assuming uniform infiltration two flume type II, at the beginning and end of it, were installed and the cumulative infiltration was determined by the volume balance method. The furrow with variable conditions was divided into four sections by installing five flumes. By examining the spatial variations of the mean cumulative infiltration, its value decreased from the first to the fourth section for the first irrigation by 15% and for the subsequent irrigations by 13%. Temporal changes of cumulative infiltration decreased by 27 and 30% for the first and second sections and by 26% for the third and fourth sections. An 11% increase in the average weight of the aggregate diameter and a 7% decrease in bulk density indicate physical changes in the soil. Surface runoff losses increased from 8 to 18.77% in the furrow assuming uniform infiltration and from 10.91 to 19.77% in the furrow with variable infiltration, and application efficiency decreased by 6%.

H. Ghanbari, J. Mamizadeh, M. Valizadeh,
Volume 25, Issue 3 (Fall 2021)
Abstract

Water hammer is one of the unsteady flows in urban water distribution networks, which has been of great importance due to the damage caused to the pipeline and has always been of interest to researchers. In this study, the phenomenon of water hammer due to the sudden closure of the valve in the downstream end has been investigated in a laboratory and using a numerical model. In the laboratory section of the study, the effect of flow changes with control equipment and without control equipment on the maximum and minimum height of pressure wave head was investigated. The results showed that the proper performance of the surge tower pipe in reducing the maximum pressure wave as well as improving the negative pressures in the system. In a maximum discharge of 35.75 liters per minute, surge tower pipe reduced pressure wave head by a maximum of 70.40%. In a minimum discharge of 7.70 liters per minute, the surge tower pipe reduced the height of maximum pressure by 34.82%. Also, in minimum discharge, surge tower pipe has improved the minimum pressure wave head by more than 78%. AFT Impulse numerical model was used to analyze the water hammer. The results of the numerical model were examined in a benchmark problem using a characteristic method and its validity was confirmed. Simulation of laboratory model with numerical software showed that this software only predicts the first wave properly when water hammer produces negative pressures, but in the next cycles it does not show the depreciation rate of the pressure wave, properly.

S. Azadi, H. Nozari, S. Marofi, Dr. B. Ghanbarian,
Volume 26, Issue 1 (Spring 2022)
Abstract

In the present study, a model was developed using a system dynamics approach to simulate and optimize the profitability of crops of the Jofeyr (Isargaran) Irrigation and Drainage Network located in Khuzestan Province. To validate the results, the statistical indicators of root mean square error (RMSE), standard error (SE), mean biased error (MBE), and determination coefficient (R2) were used. To validate the simulation results of the benefit-cost ratio, the values of these indicators were obtained 0.25, 0.19, 0.005, and 0.96, respectively. Then, to determine the optimal cultivated area of the network and increase the profitability, the cropping pattern was determined both non-stepwise and stepwise in 2013 to 2017 cropping years. In the non-stepwise, the cultivated area of each crop changed from zero to 2 times of current situation. In stepwise, due to social and cultural conditions of inhabitants, this change was slow and 10% of the current situation every year. The analysis of the results showed the success of the model in optimizing and achieving the desired goals and the total benefit-cost ratio increased in all years both non-stepwise and stepwise. For example, in 2017 compared to 2016, production costs decreased by 7.1 percent and sales prices increased by 5.8 percent, and increased the benefit-cost in 2017 compared to the previous year. The results showed that the present model has good accuracy in simulating and optimizing the irrigation network, its cropping pattern, and defining other scenarios.

S. Azadi, H. Nozari, S. Marofi, B. Ghanbarian,
Volume 27, Issue 3 (Fall 2023)
Abstract

One of the strategies for agricultural development is the optimal use of irrigation and drainage networks, which will lead to higher productivity and environmental protection. The present study used the system dynamics approach to develop a model for simulating the cultivated area of the Shahid Chamran irrigation and drainage network located in Khuzestan province by considering environmental issues. Limit test and sensitivity analysis were used for model validation. The results showed the proper performance of the model and the logical relationship between its parameters. Also, the cropping pattern of the network was determined in two modes of non-stepwise and stepwise changes to determine the optimal cultivated area of the Shahid Chamran network with environmental objectives and minimize the amount of salt from drains. The results showed that the amount of optimized output salt from the network has decreased in both non-stepwise and stepwise changes compared to the existing situation in the region. The total output salt in the current situation, from 2013 to 2017, was obtained at 2799, 2649, 2749, 2298, and 2004 tons.day-1, respectively, in the stepwise changes, are 2739, 2546, 2644, 2223, and 1952 tons.day-1, and finally, in the non-stepwise changes, are 2363, 2309, 2481, 2151, and 1912 tons.day-1. The results showed that the non-stepwise changes due to considered limitations have been more successful in reducing output salt than the stepwise changes. The analysis of the results showed the model's success in optimizing and achieving the desired goals. The results showed that the present model has good accuracy in simulating and optimizing the irrigation network, cropping pattern, and defining other scenarios.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb