Search published articles


Showing 56 results for Heidar

M. Heidarpour, H. Afzalimehr, E. Khorami,
Volume 6, Issue 3 (fall 2002)
Abstract

Of the many hydraulic structures developed by man, the weir is perhaps the oldest. Weirs are used for the measurement of discharge and regulation of water flow. The most common types of weirs are broad-crested, sharp-crested, circular-crested and cylindrical, and ogee crest weirs. Advantage of the circular-crested and cylindrical weir compared to the other weirs include simplicity of design, stable overflow pattern, larger coefficient of discharge and the associated lower costs. In the present study, potential flow around a circular cylinder are adapted to determine the velocity distribution at the crest section and to develop a model for coefficient of discharge (Cd) for circular-crested weirs. These results were evaluated using present test data for three types of weir models, namely, cylindrical, semicylindrical and semicylindrical with different heights and also Dressler theory. The results of the study showed that the experimental velocity profile agree very well with the theoretical profiles for the range of the study. Also, the prediction of the velocity distribution over the weir crest using Dressler theory is always less than the proposed model and measured data. The predicted values of coefficient of discharge (Cd) based on the proposed model agree well with Cd determined from direct discharge measurements. For the cylindrical model, the coefficient of discharge can be predicted from the proposed model within an error of –7% and for the semicylindrical and semicylindrical with different heights within ± 5%.
H. Afzalimehr, M. Heidarpour, S. H. Farshi,
Volume 7, Issue 1 (spring 2003)
Abstract

In this study, two data ranges of uniform flow (bulk parameters) and non-uniform flow (local parameters) are employed to investigate resistance to flow and the factors affecting it using velocity distribution of boundary layer theory. The results indicate that the cross-section form factor or adjustment roughness coefficient of logarithmic law can not improve the prediction of flow resistance. On the other hand, it is possible to ameliorate the prediction of resistance to flow by application of the Froude number and the Shields parameter along with the integration constant of the logarithmic velocity distribution. Also, there is no improvement in flow resistance prediction by taking into account power equations. On the other hand, the application of boundary-layer characteristics such as displacement thickness and momentum thickness in velocity profile can remove the risk of spurious correlation. Based on the measured velocity profiles for non-uniform flow in Gamasiab river, a new flow resistance equation is suggested in which the following bulk parameters are considered: flow depth, maximal velocity at the water surface, and friction slope.
M. Heidarpour, H. Afzalimehr, M. Naderi Bani,
Volume 7, Issue 3 (fall 2003)
Abstract

The use of slot through a pier is a new method proposed to control local scour at bridge piers. In this study, control of local scour at bridge pier is studied using 20 pier models under clear water conditions. The models consist of one circular pier without slot, three round-nosed piers without slot, and 16 piers with slot. Two slot lengths were chosen (yl=b and yl=2b, where y1 is the length of slot and b is the width (diameter) of the pier). Furthermore, they were located at two positions (near the bed and near the water surface). The results showed that for a circular pier, the slots with the lengths of b and 2b, located near the water surface, had no influence on the equilibrium scour depth. It was also found that for all piers, maximum reduction in scour depth occurred for piers with a slot length yl=2b and close to the bed. Also, the efficacy of a slot for scour protection in the case of a round-nosed pier was more than a circular pier (with a diameter equal to the width of a round-nosed pier).
M. Khalili Mahani, B. Hatami, H. Seyedoleslami, A. M. Rezaei, B. Heidari,
Volume 8, Issue 4 (winter 2005)
Abstract

Elm leaf beetle were reared under controlled conditions (25± 2 oC, 70± 5%R.H. and 16L: 8D) to determine relationship between biological traits and the number of eggs per female on different hosts and to evaluate correlation between traits. U. carpinifolia, U .c. var. umbraculifera, U. glabra var. pendula and Celtis caucasica were examined as hosts. The biological traits consisted of 1st, 2nd and 3rd larval developmental times first, second, and third larval percent mortality rates prepupal and pupal developmental times male and female longevity and pre-ovipositional period recorded during experiments. The relationships between traits and the number of eggs per female were determined by multiple regression (Foreward selection and stepwise). The correlation between traits was evaluated, too. The results showed that the number of eggs per female were mostly affected by certain special traits such as 2nd and 3rd larval developmental time, pre-ovipositional period and male longevity which are distinct in different hosts and seasons.
M. Heidari, E. Tafazoli,
Volume 9, Issue 2 (summer 2005)
Abstract

One of the main criteria for salt tolerance is cell membrane stability under stress. Reactive oxygen species (ROS), activity of lipoxygenase (Lox) and lipid peroxidation are considered to be destructive to cell membrane under salt stress. In this study, the effects of 0, 75 and 150 mM NaCI, over a period of 14 days on the activity of lipoxygenease, the amount of hydrogen peroxide (H2O2) and malon dialdehyde (MDA. as a lipid peroxidation) in the leaves of Pistacia vera L. (cv. 'Qazvini' and wild 'Sarakhs' pistachio) and 'Mastic' (P. mutica F. & M.) were studied. The results indicated that by increasing salinity Lox activity increased in the leaves of all the three rootstocks. This activity reached a climax on the 7th day and then decreased on the 14th day. Among the three species, Mastic reached the highest amount of the Lox activity on the 14th day with the lowest amount of Lox reduction. The amounts of H2O2 in the leaves of all the three rootstocks increased, on the 14th day the highest amount of hydrogen peroxide was found in 'Mastic' and 'Sarakhs' after treating them with 150 mM NaCl. The amounts of MDA were also reached the highest level in all three rootstocks on the 7th and 14th days. The results also indicated the possibility of the use of lipid peroxidation index and Lox activity for selecting salt tolerant Pistacia rootstocks. More studies are needed for understanding the biochemical changes and enzyme activities in Pistacia rootstocks under salt stress.
S. A. Hadj Heidari, Gh. Ghorbani, M. Alikhani,
Volume 9, Issue 2 (summer 2005)
Abstract

To compare the relative value of the fish meal and the cottonseed meal in highly fermentable diets (40% forage and 60% concentrate with), eight cows were assigned randomly to diets with 0, 1.5, 3 and 4.5 percent of the fish meal. In the first experiment, the degradability of dry matter and crude protein of the fish meal, the cottonseed meal and concentrate in diets was estimated with different incubation times (0, 4, 8, 12 and 24 h) with fistulated Ghezel sheep fed at maintenance level. The effective degradability of dry matter and the crude protein of fish meal was significantly lower than cottonseed meal (p<0.05). In different concentrates, there was no significant difference in effective degradability of dry matter but with the increase of fish meal the effective degradability of crude protein decreased significantly. In the second experiment, the eight multiparous Holstein cows with the similar milk production (25.37 ± 0.85) were examined in a replicated 4 × 4 Latin square design with the 21-day period. There were no significant differences between the treatments in digestibility of OM, OM and CP, the dry matter intake, 3.2 % FCM, milk fat (%), milk lactose (%), milk total solid (%), and the yield of the milk fat, feed efficiency and body weights. Diets containing fish meal, compared to the control group, significantly higher milk production, milk protein (%), the yield of milk protein and lactose (p < 0.1), but the different levels of fish meal had no significant effect on these factors. The urea pH decreased significantly with the increase of the fish meal but rumen pH and fecal pH were unaffected. The results of the experiment indicated that diets with the 1.5 or 3% fish meal in cows with less than 30 kg milk is recommended.
H. Afzalimehr, M. Heidarpour, S. H. Farshi,
Volume 10, Issue 1 (spring 2006)
Abstract

Suitable stable channel design and optimization of river geometry can reduce cost of projects. The regime theory provides the possibility of empirical and semi-empirical investigations of stable channel design in which erosion and sediment transport are in equilibrium. The objective of this research is an investigation and a comparison of the influence of uniform and non-uniform flows on the prediction of stable channel characteristics. The following empirical and semi-empirical (extremal hypothesis) equations were selected to study the effect of uniform flow: Lacey, Chital, Kondap and Garde, and Chang. Using 24 regime channels in USA, the statistical and graphical approaches were applied to compare and to evaluate the power of prediction of the selected equations. In order to investigate the effect of non-uniform flow structure on the stable channel characteristics, 21 measured velocity profiles in Gamasiab River were applied. Using the boundary-layer theory, shear velocity was computed for each profile. Accordingly, the estimated Shields parameter using the boundary-layer approach is the most effective parameter on the regime channel prediction. Simultaneous application of the non-uniform flow effect and the boundary-layer theory not only remove the risk of spurious correlation but also improve the estimation of stable channel characteristics.
B. Heidari, A. Rezaie, S. A. M. Mirmohammadi Maibody,
Volume 10, Issue 2 (summer 2006)
Abstract

Diallel analysis was used to estimate the combining ability, gene action, gene number, heritabilties and other genetic parameters of a set of wheat genotypes. For this purpose, nine parents and their 36 crosses were evaluated for 9 traits in a randomized complete block design with three replications in 1996. The analysis of variance revealed significant differences among all genotypes for all traits. Estimates of general and specific combining ability mean squares based on Griffing’s Method 2 indicated the importance of additive and non additive effects in the expression of all traits. Alvand and Roshan cultivars for grain yield per plant, Alvand for grain number per main spike and main spike weight, and Alvand and Alamoot for 1000 grain weight were the best combiners, thus use of them is beneficial for these traits. Based on the estimates of average degree of dominance and results of graphical analysis, the gene action for grain number and spikeletes per main spike were partial dominance, while for grain yield per plant, biological yield, plant height, harvest index and 1000 grain weight, overdominance gene actions were observed. Moreover, genotypic correlation coefficients of grain yield per plant with grain number per main spike, 1000 grain weight, grain weight per main spike and main spike weight were positive and significant.
M. Heidarour, S. F. Mousavi, A. R. Roushani Zarmehri,
Volume 10, Issue 3 (fall 2006)
Abstract

Because of slight variation of the static head due to discharge fluctuations, the labyrinth weirs are considered to be economical structures for flood control and water level regulation in irrigation networks, as compared to other devices. Labyrinth weirs are composed of folded sections observed as trapezoidal and triangular in plan view. In this study, rectangular and U-shaped labyrinth weirs were investigated. Experiments were conducted on 15 labyrinth weir models. The models included eight rectangular labyrinth models and six U-shaped labyrinth models with different heights and lengths, and one linear model. All the experiments were performed in a horizontal rectangular flume, 7 m long, 0.32 m wide and 0.35 m high. The results indicated that for all the models, discharge coefficient increased sharply with an increase in Ht/P and attained a maximum value. This coefficient then decreased smoothly with a further increase in Ht/P. Increasing height of weirs increased the discharge coefficient for both rectangular and U-shaped weirs. The results also showed that increasing the length parallel to the flow direction decreased and increasing the length perpendicular to the flow direction increased the discharge coefficient. Generally, the discharge coefficient for rectangular weir was less than that of the U-shaped weir. The obtained results compared with those of Tullis et al. (1995) showed that discharge coefficient for U-shaped weir is more and for rectangular weir is less than that of the trapezoidal weir for angle of the side legs of 8 and 12 degrees.
M. Heidari Soltanabadi, A. Hemmat,
Volume 11, Issue 1 (spring 2007)
Abstract

Studies show that excessive rotation of rice, when the grains revolve inside the milling chamber, increase the breakage. Ease of grain movement in the milling chamber could minimize this problem by utilizing screw conveyor at the first part of rotor. In this study the rotor of a conventional milling was equipped with a screw conveyor. The effects of two rotor types (modified and conventional rotors), three output rates (412, 654 and 915 kg/h) and three blade distances from the agitator (11, 12 and 13mm) were examined on indices of rice quality using a split-split plot design. In this experiment, the percentage of whole white rice and breakage, degree of milling and milling performance index were either measured or calculated. Results showed that only the effect of blade distance on percentage of breakage was significant whereas the effect of feed rate on all measured parameters was significant. In addition, the interaction effects of rotor type and blade distance, rotor type and feed rate on percentage of whole white rice and breakage were significant, respectively. The milling performance index showed that the best conditions for both rotors can be obtained at output rate of 412kg/hr and 11or 12mm blade distance from the agitator. For this adjustment, the average of percentage of breakage in the modified and conventional rotors were 20.5 and 23, respectively.
M. Shabanian, H. Masomi, A. Hoseinipour, J. Heidarnejad, Z. Azami,
Volume 11, Issue 1 (spring 2007)
Abstract

Cucumber cultivars, grown in greenhouse in the Jiroft region, were surveyed for the relative incidence of Zucchini yellow mosaic virus (ZYMV), Watermelon mosaic virus-2 (WMV-2), Cucumber mosaic virus (CMV) and Tomato spotted wilt virus (TSWV) from 2001 to 2004. Samples from 1294 plants representing different cultivars were analysed by Enzyme-linked immunosorbent assay (ELISA) and Dot immunobinding assay (DIBA). The data showed that green-house cucumbers are infected by CMV, ZYMV, TSWV and WMV-2. However, ZYMV was the most prevalent virus. Mixed infection including double and triple infection was identified in some samples. Transmission of aphid-borne viruses (CMV, ZYMV and WMV-2) by Aphis gossypii, A. fabae, A. craccivora and Myzus persicae revealed that ZYMV is most efficiently vectored by these aphids and, A. craccivora transmitted these viruses with more than 60% efficiency. In addition, WMV-2 was not transmitted by A. gossypii. In RT-PCR, ZYMV infection was confirmed by amplifying a PCR product of the predicated size 458 bp, using total RNA extracted from infected plants. All ZYMV infected samples reacted with monoclonal antibodies (705-1, 705-2 and 705-4) in TAS-ELISA test. These results showed that ZYMV isolate collected from Jiroft belongs to group A, cluster 1 or 2. In electron microscopy study, normal length of ZYMV flexuous particles in partial purified preparation was calculated as 790 nm. The molecular weight of coat protein of ZYMV was estimated at 36 KDa., using SDS-PAGE and western blotting. This is the first report of these viruses in greenhouse grown cucumber in the Jiroft region.
M. Heidari, H. Nadeyan, A.m. Bakhshandeh, Kh. Alemisaeid, G. Fathi,
Volume 11, Issue 40 (summer 2007)
Abstract

The influence of Nitrogen (N) rates on mineral nutrient uptake in stem and seeds, proline and carbohydrate in flag leaves of Wheat (Triticum aestivum L . Var Chamran) under saline conditions was studied in a field experiment in 2003 and 2004. The experiment was conducted using a split plot design with three replications. The treatments comprised five levels of salinity: 1.5, 5, 10, 15 and 20 ds/m in main plot and three nitrogen levels: 50 , 100 and 150 kg N/ha in sub plot. Salinity treatments were applied in a clay–loam soil by water with NaCl and CaCl2 (5:1 by wt ). The results showed, the nutrient uptake was influenced by both salinity and N treatments. With the Exception of magnesium in seed, salinity increased nitrogen, calcium and magnesium concentrations in seed and stem in both years. By increasing salinity levels, the concentration of potassium in stem and seed decreased and Sodium concentration increased. In the stem the concentration of Sodium in the 20 ds/m was about 17 and 22 times more in the first and second year, respectively. In these experiments, by increasing salinity and nitrogen treatments, proline concentration in flag leaves increased in the two stages (flowering and milky stages) in both years. Salinity had similar effect on carbohydrate accumulation in both stages, but nitrogen treatment had two different effects on carohydrate concentration. In flowering stage, by increasing nitrogen application, carohydrate concentration increased but in milky stage decreased.
B. Heidar, G.h. Saeidi, B.e. Sayed-Tabatabaei,
Volume 11, Issue 42 (winter 2008)
Abstract

  In this study, factor analysis was conducted to determine the factors which contributed to the variation of quantitative traits and path analysis was performed to find the direct and indirect effects of yield components on grain yield in bread wheat. A doubled haploid population of 157 lines of wheat (Triticum aestivum L.) was evaluated for agronomic and morphological traits, using a randomized complete block design with three replications in 2003 and 2004. The results of factor analysis based on maximum likelihood indicated five factors explaining 80.4% and 73.9% of total variation in 2003 and 2004, respectively. The first factor in 2003 had 30.5% contribution to the total variation, strongly influenced by the traits of pollination date, heading date, flag leaf length and days to maturity. This factor also indicated the negative relationship among the yield components and the importance of relationship between grain yield and some morphological traits. The first factor in 2004 was more affected by grain weight/spike, grains/spike and 1000-grain weight, thus it was named as grain yield factor. The second and third factors in 2003 were considered as plant height and grain yield and in 2004 as maturity and plant height, respectively. The results of path analysis showed that grains/spike had the most direct and positive effects on grain yield in 2003 (1.33) and 2004 (0.87). Because of the negative and high indirect effects of grains/spike via fertile spikes/m2 and 1000-grains weight on grain yield, the correlation coefficient between grain yield and grains/spike was very low. There was not much difference between the phenotypic and genetic direct effects of spike/m2 on grain yield, indicating that their relationship was less affected by environmental conditions. In general, the results showed that grains/spike and spikes/m2 can be more efficient compared to 1000- grains weight for increasing grain yield and can be used as selection indices in breeding programs. Also, according to the results of factor analysis, selection based on the fourth factor including biological yield, spike/m2 and grain yield as selection index can be effective to improve grain yield in breeding programs.


M. Ghasemi Varnamkhasti, H. Mobli, A. Jafari, M. Heidari Soltanabadi, Sh. Rafiee,
Volume 12, Issue 44 (summer 2008)
Abstract

Rice whitening is an important stage in rice milling process and improvement of the whitener machines has a remarkable effect on rice loss. To decrease the amounts of broken rice and losses, the rotor of the blade whitener was equipped with screw conveyor. To investigate the effects of rotor speed (in four levels: 600, 700, 800 and 900 rpm) and output rate (in three levels: 400, 500 and 600 kg/h) on quality of milled rice, a factorial design with randomized complete block experiments with three replications were conducted. In this study, Sorkheh variety (a medium rice variety), which is one of the prevailing varieties in Esfahan, was used. The results showed that the lowest breakage percentage (20.92%) occurred at rotor speed of 700 rpm with an output rate of 600 kg/h and the best degree of milling (6.33%) took place at rotor speed of 600 rpm with an output rate of 400 kg/h. The best rice quality (low broken rice and high degree of milling) was observed at rotor speed of 600 rpm with 500 kg/h output rate.
F. Heidari, S. Zehtab-Salmasi, A. Javanshir, H. Aliari, M. R. Dadpour,
Volume 12, Issue 45 (fall 2008)
Abstract

In order to examine the effects of plant density on the morohological traits, yield and essential oil of peppermint, an experiment was conduced in Agricultural College of Tabriz University during 2005 and 2006. The treatments included four plant density levels ( 8,12 ,16,20 plants.m-2) with three replications. The treatments were based on a split plot design in time and result analysis of compound variance was done during two years. The two years’ results of the compound variance showed that the plant density affected the fresh yield, dry yield, the bush essential oil percentage and the essential oil yield, but it had no effect on the bush height and the leaf’s essential oil percentage. In the second year, the maximum fresh yield, dry yield, bush height, the bush essential oil percentage, and the essential oil yield were obtained. In the second year, the maximum essential oil yield in the density of 20 plant/m2 was 21.15 li.ha-1.
R Rostamian, S.f Mousavi, M Heidarpour, M Afyuni, K Abaspour,
Volume 12, Issue 46 (1-2009)
Abstract

Soil erosion is an important economical, social and environmental problem requiring intensive watershed management for its control. In recent years, modeling has become a useful approach for assessing the impact of various erosion-reduction approaches. ِDue to limited hydrologic data in mountainous watersheds, watershed modeling is, however, subject to large uncertainties. In this study, SWAT2000 was applied to simulate runoff and sediment discharge in Beheshtabad watershed, a sub-basin of Northern Karun catchment in central Iran, with an area of 3860 km2. Model calibration and uncertainty analysis were performed with SUFI-2. Four indices were used to assess the goodness of calibration, viz., P-factor, d-factor, R2 and Nash-Sutcliffe (NS). Runoff data (1996-2004) of six hydrometery stations were used for calibration and validation of this watershed. The results of monthly calibration p-factor, d-factor, R2 and NS values for runoff at the watershed outlet were 0.61, 0.48, 0.85 and 0.75, respectively, and for the validation, these statistics were 0.53, 0.38, 0.85 and 0.57, respectively. The values for calibration of sediment concentration at the watershed outlet were 0.55, 0.41, 0.55 and 0.52, respectively, and for the validation, these statistics were 0.69, 0.29, 0.60 and 0.27, respectively. In general, SWAT simulated runoff much better than sediment. Weak simulation of runoff at some months of the year might be due to under-prediction of snowmelt in this mountainous watershed, model’s assumptions in frozen and saturated soil layers, and lack of sufficient data. Improper simulation of sediment load could be attributed to weak simulation of runoff, insufficient data and periodicity of sediment data.
S.f Mousavi, J Mohammadzadeh Habili, M Heidarpour,
Volume 12, Issue 46 (1-2009)
Abstract

After construction of a dam across a river, sediments settle behind the dam. It is important for dam designers to estimate the rate and distribution of sediments in the reservoir. In this study, the accuracy of area-increment and area-reduction empirical methods to predict the sediment distribution of Dez, Dorudzan and Shahid Abbaspour reservoirs is evaluated. The last measurement of sediment in these reservoirs was in 2003 (Dez), 2005 (Dorudzan) and 2005 (Shahid Abbaspour). The comparison between actual sediment distribution and predicted sediment distribution by using area-increment and area-reduction methods showed the maximum error at the depth of sediment behind the dam. At higher elevations, the error decreased and reached zero when the elevation was maximum. For Dorudzan reservoir, which has the least sediment volume (31 Mm3), the area-reduction method is less accurate, as compared to the area-increment method (81% vs. 37.5%). For Dez and Shahid Abbaspour reservoirs, where their sediment volume is high (608 and 737 Mm3, respectively), the error of the two methods is relatively equal (in Dez, 29% for both methods, and in Shahid Abbaspour, 22% for area-reduction and 25% for area-increment methods). After long-time sedimentation, the shape factor decreased and reservoir type of all three reservoirs changed to 2.
E Izadi, M Heidar Pour, A Kabiri Samani,
Volume 12, Issue 46 (1-2009)
Abstract

In this study, the flow characteristics have been investigated by measuring separation zone, surface and velocity profiles over the circular crested side weirs. An equation was proposed for the length of the separation zone using dimensional, statistical and regression analysis. The dimensional analysis showed that the length of separation zone depends on the upstream to the downstream water depth over the side weir, channel width to the downstream water depth and the Froude number. Comparison of the longitudinal and sectional surface profiles showed that the surface profiles at the vicinity of the side weir are non-uniform, due to separation zone close to the side weir. Therefore, the suitable place for measuring the characteristics of flow is along the centre line of the channel. It was observed that the maximum velocity occurred below the surface water which might be due to the secondary flow around the side weir. By increasing the distance far enough from the side weir, the effects of secondary flow were minimized and the velocity profiles tended to be uniform.
S. H. Sadeghi, S. F. Mousavi, M. Heidarpour,
Volume 16, Issue 60 (Summer 2012)
Abstract

Precise calculation of inlet pressure into sprinkler laterals is an important problem for proper distribution of uniformity. The adjusted average friction correction factor, FaAVG , provides the possibility of calculating the inlet pressure to mutli-outlet pressurized irrigation pipelines when the first outlet spacing from the pipe entrance is arbitrary. To investigate the effect of allowable head-loss in the lateral pipeline on inlet pressure, a new equation was developed for calculating this factor. A progression coefficient was assumed for variable discharge of the outlets. The results showed that though the inlet pressure of the lateral depends on the head loss between the outlets, it is negligible when more than 15 outlets are used. It was also concluded that when N is less than 15 and the ratio of distance between inlet and first outlet to outlet spacing is less than 1, the conventional approaches overestimate the inlet pressure. In this research, a new equation was also developed for Christiansen friction factor in which the first outlet is located at a fraction of outlet spacing. This new factor is dependent on the head loss between the first and last outlets, in addition to the number of outlets and the power of velocity equation. The results of applying this new factor showed good correlation with other researchers’ numerical results when a large number of outlets are coalesced.
M. R. Asgharipour, A. Ghanbari Bonjar, H. Azizmoghadam, A. R. Sirousmehr, M. Heidari,
Volume 16, Issue 62 (Winte - 2013 2013)
Abstract

In this study the effects of irrigation with raw or diluted municipal effluents along with foliar micro-nutrients fertilizer spray were examined on the growth, yield and mineral nutrient in foxtail millet plants. The experimental design was a split-plot with three irrigation sources (namely raw sewage, 50% diluted sewage and well water) as main-treatment and four combinations of Mn and Zn foliar spraying as sub-treatments, which were applied with three replications. The experiment was conducted at the Zabol University research farm during 2009. The applied municipal effluents contained higher levels of macro and micro-nutrients than the well water. The experimental results indicated that irrigation of plants by raw or diluted sewage improved the measured growth parameters and productivity of foxtail millet plants. In addition macro and micro-nutrients concentrations were improved. These improvements were attributed to the presence of high levels of essential nutrients such as nitrogen, phosphorus, and organic matters in wastewater. Manganese and Zn supplied through sewage water alone were not able to raise the productivity of millet to the level obtained through fertilizers at the recommended level, which indicated that additional nutrients through fertilizers are required to obtain higher productivity of millet under sewage farming. Despite the differences in nutrients concentration among different irrigation water sources, the micro-nutrients foliar spray did not affect concentration of macro and micro-nutrients in foxtail millet plant. Overall, the results suggest that municipal sewage could be efficiently utilized as an important source of water and nutrients in growing foxtail millet Sewage water irrigation did not have any appreciable harmful effect on crop productivity.

Page 1 from 3    
First
Previous
1
 

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb