Search published articles


Showing 2 results for Mirjani

R. Amirjani, A. Kamanbedast, M. Heydarnejad, A. Bordbar, A. Masjedi,
Volume 22, Issue 4 (Winter 2019)
Abstract

In a pressure flushing method, when the water is discharged from the bottom outlet, after a period of flushing, a flushing cone will be formed at the front of the bottom outlet; the dimension of this cone is affected by several parameters such as outlet discharge flow, water depth of reservoir, and the kind of sediments accumulated in the reservoir. In this study, for the effect of cohesive & non-cohesive sediments, a physical model using specific dimensions was employed in order to develop the sediment evacuation method, and them a Semi-Cylinder structure in front of the lower drain was tested. The experiments were carried out using cohesive & non-cohesive sediments under two conditions: with the semi-cylinder and without it, at 90 experiments. The results indicated that the with discharge was increased, on i average, under both conditions and the volume of the score cone was increased. With decreasing the water depth, the flow mood was changed to free flushing, increasing the length and volume of the score cone. Semi-Cylinder form, on average, increased the volume of sedimentation and the length of sedimentation; this increase could be due to the formation of a pair of rotating Vortexes inside the Semi-Cylinder structure on both sides of the central axis of the valve.

M. Mirjani, M. Soleimani, V. Salari,
Volume 24, Issue 1 (Spring 2020)
Abstract

Growing concerns about water pollution and its potentially harmful effects on human being have stimulated serious efforts to develop reliable biological monitoring techniques. The bioluminescent analysis is one of the most promising approaches for the biomonitoring of the environment, due to the sensitivity of the luminescent system to even micro quantities of the pollutants. The aim of the current study was to assess the petroleum compounds toxicity using Vibrio fischeri bacterium. The growth pattern of the bacterium was determined in photobacterium broth using the optical density measurement at 600 nm, which showed the optimum growth time of 16-18 hours after inoculation. In this research, the effects of environmental parameters such as temperature, pH and various concentrations of oil on the growth and luminescence of Vibrio fischeri were examined. The results revealed that the optimum growth conditions of the bacterium after 16 hours included the temperature of 25 °C and pH 7. Besides, the growth and luminescence intensity of Vibrio fischeri were a function of total petroleum hydrocarbon concentrations in the medium, which were significantly reduced in oil concentrations by more than 4% w/v. Therefore, the Vibrio fischeri could, therefore, have the potential for monitoring of petroleum pollutants in the aqueous media.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb