Search published articles


Showing 14 results for Mostafazadeh

Behrouz Mostafazadeh, Sayed-Farhad Mousavi, Mohammad Hossain Sharif-Bayanolhagh,
Volume 2, Issue 3 (fall 1998)
Abstract

To determine the effects of field slope, emitter discharge, irrigation water volume and soil texture on soil moisture profile and soil surface wetted shape from a point source, field data were collected on three different soil types, three emitter discharges (4, 8, and 12 lph), four slopes (0, 2, 5, and 10%), and five irrigation water volumes (10, 20, 30, 40, and 50 liters) with three replications. The results showed that the surface-wetted area increases as the emitter discharge increases. The surface-wetted area decreased with a corresponding increase in emitter discharge in experimental fields with light-textured soils. In experimental fields with heavy textured soils and slopes greater than 5%, the changes in surface-wetted area due to the emitter discharge increases, were higher compared to slopes of less than 5%. Since, a higher emitter discharge would result in higher surface-wetted area, the results showed that for an equal volume of irrigation water, the soil moisture profile was deeper for lower emitter discharge. In general, the volume of wetted zone was higher for greater emitter discharges. It was found that as the volume of irrigation water increased, the volume of wetted zone would increase correspondingly. This effect is more prominent than that of emitter discharge. In general, the depth of wetting front was lower and the wetted surface area was greater for heavy textured soils as compared to the light textured soils. The wetted-surface area and the shape of wetting front in the direction of slope were affected by the soil infiltration, emitter discharge and volume of irrigation water where these effects were more critical in higher sloping lands.
Sayed Farhad Mousavi, Behrouz Mostafazadeh, Shokrollah Absalan,
Volume 2, Issue 4 (winter 1999)
Abstract

This study aims to evaluate the present management of border irrigation systems applied to wheat, alfalfa and sugar-beet farms in Boyer-Ahmad and Gachsaran cities in Kohgiloyeh and Boyer-Ahmad Province. Experimental farms included 8 alfalfa farms, 5 wheat farms and 5 sugar-beet farms. The experiments were conducted at different growth stages of plants and customary borders with prevalent dimensions, slopes, and management practices. The relationship between management allowable deficit, moisture deficit before irrigation, and infiltrated depth indicated that in most cases either “deficit irrigation” or “stress irrigation” had been applied. This type of irrigation has positive effects on water use but negative effects on supply of required soil moisture for plants. In the first to third irrigations, measured application efficiencies ranged from 40.8% to 100%, 52.2% to 100%, and 61.1% to 100%, respectively. Graphs of advance, recession, and ideal recession showed the effects of border slope and length on inflow cut time and uniformity of water distribution. Water infiltration curves showed the amount of deficit irrigation. The results showed that weak irrigation management is the result of three parameters: lack of knowledge on the part of farmers about soil moisture conditions and correct time for irrigation, weak irrigation scheduling, as well as an imbalance between available water supply and irrigation requirements which leads to wasting water and reduced irrigation efficiency.
B. Mostafazadeh, M. Farzamnia,
Volume 4, Issue 3 (fall 2000)
Abstract

In this research, the hydraulic behavior of furrow irrigation was investigated under cut-back, Walker-Skogerboe and conventional methods at the three experimental farms of Lavark, Shervedan, and Isfahan University of Technology for three irrigation events. In each farm, data were collected for each of the above methods with at least three replications including furrow shape, furrow length, furrow slope, soil texture, advance and furrow inflow and outflow.

 The parameters of Kostiakov-Lewis infiltration function were determined using the volume balance method. The deep percolation ratio, runoff ratio and application efficiency were then computed.

The results showed that deep percolation ratio was higher in the cut-back method as compared to the Walker-Skogerboe method (18.6% as compared to 13.7%) and the runoff ratio was less in the cut-back method as compared to those in the Walker-Skogerboe and conventional methods (12.4% as compared to 16 and 20.6%, respectively). The effect of the two parameters of deep percolation ratio and runoff ratio caused, in general, the application efficiency to be less in the conventional method than those in the cut-back and Walker-Skogerboe methods (42.7% as compared to 69 and 70%, respectively). In general, the cut-back method had a higher application efficiency in heavy texture soils as compared to light texture soils (73.9% as compared to 51.2%).


B. Mostafazadeh, M. Kahnouji,
Volume 6, Issue 1 (spring 2002)
Abstract

The emitter discharge is affected by parameters such as pressure, irrigation water temperature, manufacturer’s coefficient of variation, and emitter clogging. In order to study the effects of irrigation water temperature on emitter discharge and to determine the discharge-pressure variations and manufacturer’s coefficient of variations, an experimental trickle irrigation system was designed and studied in the greenhouse, College of Agriculture, Isfahan University of Technology. Since the sensitivity of different emitters to water temperature variations is variable, four different, widely used, types of Iranian emitters including in-line long-path emitter, gun emitter, pressure compensating emitter, and double-chamber tube were used. Each emitter was evaluated under 14 different irrigation water temperature treatments ranging from 11 to 43.5°C.

 The results showed that in general as water temperature increases, the emitter discharge increases linearly in all types, except for the pressure compensating emitter in which the discharge decreases linearly. The emitter uniformity, absolute emission uniformity and Christiansen uniformity coefficient parameters were affected by emitter discharge variations. For each type of emitter under study, the changes in manufacturer’s coefficient of variations due to irrigation water temperature were different. The manufacturer’s coefficients of variations at a water temperature of about 20°C for double-chamber tube, in-line long-path emitter, gun emitter and pressure compensating emitter were equal to 5, 7, 13 and 22 percent, respectively. Moving from gun emitter to the double-chamber tube and finally to the in-line long-path emitter, the sensitivity to irrigation water temperature decreased. Sensitivity to pressure variations decreased in the order of gun emitter, double-chamber tube, in-line long-path emitter, and finally pressure compensating emitter.


S. Akhavan, S. F. Mousavi, B. Mostafazadeh-Fard, A. Ghadami Firoz Abadi,
Volume 11, Issue 41 (fall 2007)
Abstract

To investigate yield and water use efficiency (WUE) of potato with tape and furrow irrigations, an experiment was performed at Hamadan Agricultural and Natural Resources Research Center (Ekbatan station) in 2004. The experiment was arranged in a split-plot experimental design based on completely randomized block with 3 replications of irrigation water amount as the main factor (75%, 100%, 125% of cumulative evaporation from class A pan) and sub-factor of irrigation method [including tapes in the middle of furrow ridge on soil surface (TD0), tapes in the middle of furrow ridge at the depth of 5 cm (TD5), tapes on the sides of furrow ridge on soil surface (TS0), and furrow irrigation (F)]. The results indicated that yield of potato increased with increasing water use. Regardless of irrigation method, maximum (32.51 ton/ha) and minimum (19.33 ton/ha) yield of potatoes was achieved with 125% and 75% irrigation water treatments, respectively. The lowest yield (21.35 ton/ha) was obtained in furrow irrigation and the highest yield (28.91 ton/ha) belonged to tape irrigation (TD5 treatment). The highest WUE (4.68 kg/m3) belonged to tape irrigation (TD5 treatment) and the lowest WUE (3.32 kg/m3) belonged to furrow irrigation (F). The difference in WUE between 75% and 100% irrigation water treatments was not significant. The highest WUE (4.49 kg/m3) was achieved in treatment 125%. Also, it is more economical to use irrigation water treatment of 125%, as compared with other irrigation water treatments.
S. Yousefi-Moghadam, S. F. Mousavi, B. Mostafazadeh-Fard, M. R. Yazdani, A. Hemmat,
Volume 16, Issue 60 (Summer 2012)
Abstract

Puddling is the most common method of land preparation for lowland rice cultivation. The purpose of this study was to assess the influence of various intensities of puddling on percolation rate, water retention by soil and the amount of water used for different puddling intensities in three dominant soil textures of paddy fields in Guilan province. Undisturbed soil samples were taken from 3 different soils including silty clay, clay loam and loam, with 3 replications. The soil samples were puddled by a laboratory apparatus with different intensities. The results showed that the low puddling intensity treatment caused a 29.3, 32.4 and 36% reduction of percolation rate in silty clay, silty loam and loam textures, respectively. Increasing puddling intensity from low to medium reduced percolation rate significantly, but high intensity was not effective. Soil moisture characteristic curves of all three soils showed that water retention was increased by puddling treatments. Water retention in silty clay was higher than the other two soils. The high intensity treatment needed more water than low intensity for puddling. Increasing puddling intensity from medium intensity to high intensity caused 15.4, 14.1 and 16.3% increase in the amount of water required for puddling in silty clay, silty loam and loam textures, respectively. Generally, in all the three studied soil textures, the amount of water used for high-intensity puddling was more than medium-intensity puddling, while it had no significant effect on water percolation rate and soil water retention.
H. R. Pourghasemi, H. R. Moradi, M. Mohammdi, R. Mostafazadeh, A. Goli Jirandeh,
Volume 16, Issue 62 (Winte - 2013 2013)
Abstract

The aim of present research is landslide hazard zoning using Bayesian theory in a part of Golestan province. For this purpose, landslides inventory map was created by landslide locations of landslide database (392 landslide locations). Then, the maps of effective parameters in landslide such as slope degree, aspect, altitude, slope curvature, geology, land use, distance of drainage, distance of road, distance of fault, stream power index (SPI), sediment transport index (STI), and rainfall were prepared in GIS environment. Relationship between effective factors and landslide locations were considered using Bayesian probability theory. In the next step, parameters classes weights were found and the landslide susceptibility mapping was achieved by fourteen modeling approaches (using whole parameters and deleting parameters one by one). The verification results by ROC curve and 30% landslide locations showed that the Bayesian probability model has 71.37% accuracy for the second approach of modeling in the study area.
Bita Moravejalahkami, Behrouz Mostafazadeh-Fard, Manouchehr Heidarpour, Saeed Eslamian, Jaber Roohi,
Volume 17, Issue 64 (summer 2013)
Abstract

Most furrow irrigation systems have low performance due to deep percolation at the upstream end and tailwater runoff at the downstream end of the field. To eliminate this problem improving furrow irrigation performance is necessary. Since the inflow discharge has high effect on infiltration along the furrow which consequently affects the application efficiency and water distribution uniformity, it would be important to apply different furrow inflow hydrograph shapes based on the field data such as field slope, soil texture and furrow length to save water. To produce different furrow inflow hydrograph shapes, an automatic valve which was connected to a stepper motor was designed to change the inflow discharge with time according to the desired inflow hydrograph shape. The experimental field was located at Isfahan University of Technology. A constant head water delivery system to the furrows including the automatic valve was installed in the experimental field and the tests were conducted for different inflow hydrograph shapes. The comparison of the measured furrow inflow discharges with the simulated furrow inflow discharges produced by the automatic valve showed that the automatic valve can produce different furrow inflow hydrograph shapes with high accuracy.
M. Kiani, M. Gheysari, B. Mostafazadeh-Fard, M. M. Majidi and E. Landi, , , , ,
Volume 18, Issue 67 (Spring 2014)
Abstract

The purpose of this study was to measure daily and seasonal evapotranspiration and daily crop coefficient of two common varieties of sunflower (Sirna and Euroflor) via drip-tape irrigation system. For this purpose, the sunflower water use was determined by daily monitoring of soil moisture at the depths of 10, 20, 30, 40 and 60 cm, and the crop evapotranspiration (ETC) was measured using volume balance method. According to the equation recommended by FAO, the obtained value of KC for Euroflor and Sirna varieties at the initial stage was 0.32. According to volume balance method, the Euroflor KC value for development, middle, and late stages were found to be 0.75, 1.18 and 0.9 and for Sirna were found to be 0.72, 1.15 and 0.84 respectively. Seasonal amount of evapotranspiration for Euroflor and Sirna varieties was equal to 601 and 575 mm, which was 26 and 30 percent less than seasonal ET0 in Isfahan. The average value of during the sunflower growing season was 0.77, which was greater than that offered by Doorenbose and Pruitt (0.55). As the crop coefficients of two varieties were different during the growing season and they were also different from FAO KC, measuring the actual amount of KC as a function of growing degree days can increase the accuracy of the estimated ETc and help develop the crop models in order to improve the irrigation management.
B. Molaei, M. Gheysari, B. Mostafazadeh-Fard, E. Landi, M. M. Majidi,
Volume 19, Issue 71 (spring 2015)
Abstract

Because of limiting water resources and increasing demand for food, it is necessary to investigate the effect of irrigation systems on water productivity. This research was conducted to evaluate yield and yield characteristics of two potato varieties under sprinkler and trickle irrigation systems. The treatments were two irrigation systems (sprinkler and trickle irrigation) and two potato varieties (Burren and Satina) in a randomized complete block design with three replications. Full irrigation was done based on moisture depletion from depth of root development in both irrigation methods.. Potato yield and water productivity (WP) in drip and sprinkler irrigation systems showed significant differences (P<0.01). The highest potato yield (24.08 ton ha-1) and water productivity (3.83 kg m-3) were obtained in drip-tape irrigation and Satina potato variety treatment. Also, the lowest potato yield (12.97 ton ha-1) and water productivity (1.73 kg m-3) were obtained in sprinkler irrigation systems and Burren potato variety. The potato yield in sprinkler irrigation system was obtained 42 percent lower than trickle irrigation system. In sprinkle system, dried top weight and height of stem were respectively higher and lower than those in trickle (Tape) irrigation system for both potato varieties. Overall, trickle irrigation is suggested for cool and dry climate to increase potato yield and water productivity.


M. Marzi Nohadani, B. Mostafazadeh-Fard, S. F. Mousavi, M. R. Yazdani, M. R. Alizadeh,
Volume 19, Issue 72 (summer 2015)
Abstract

The common method of puddling is using a conventional tiller which requires long time of soil operations.In this study, the effects of tillage equipment on moisture characteristic curve of a paddy soil were investigated. The treatments included tillage equipment (T1: conventional tiller, T2: rotary puddler, T3: cone puddler, T4: tractor mounted rotivator) and number of puddlings (P1: puddling once, P2: puddling twice, P3: three times'puddling and P4: four times'puddling). The results showed that at saturation point, tractor mounted rotivator presented the highest moisture content. At field capacity and permanent wilting point, the cone puddler showed the highest moisture value. The two newly made units held more moisture and saved water. In different tillage equipment, increasing the number of puddling reduced soil moisture. Available moisture in the soil without tillage (control) was less than in soils under rotary puddler and cone puddler.


Engineer H. Talebikhiavi, Engineer M. Zabihi, Dr. R. Mostafazadeh,
Volume 21, Issue 2 (Summer 2017)
Abstract

Effective soil conservation requires a framework modelling that can evaluate erosion for different land-use scenarios. The USLE model was used to predict the reaction of appropriate land-cover/land-use scenarios in reducing sediment yield at the upland watershed of Yamchi Dam (474 km2), West Ardabil Province, Iran. Beside existing scenario, seven other land-use management scenarios were determined considering pattern of land-use through study area within a GIS-framework. Then, data inputs were prepared using terrain data, land-use map and direct observations. According to the model results, the generated erosion amount was 3.92 t/ha/yr for the current land-use (baseline scenario). For this purpose, conservation practices in dry farming slopes and implementing the scenario 5 (contour farming and remaining crop residuals) can reduce the sediment to 2.02 t/ha/yr. The lowest and highest decreases in sediment yield are projected to be through implementation of scenario 6 (irrigated farming protection with plant residuals) and 7 (biological soil conservation in dry and irrigated farming). The results indicated that, implementing scenario frameworks and evaluating appropriate land-use management scenarios can lead to the reduction of sediment entering the reservoir, and prioritizing soil conservations in the studied area.
 


R. Mostafazadeh, Sh. Mirzaei, P. Nadiri,
Volume 21, Issue 4 (Winter 2018)
Abstract

The SCS-CN developed by the USDA Soil Conservation Service is a widely used technique for estimation of direct runoff from rainfall events. The watershed CN represents the hydrological response of watershed as an indicator of watershed potential runoff generation. The aim of this research is determining the CN from recorded rainfall-runoff events in different seasons and analyzing its relationship with rainfall components in the Jafarabad Watershed, Golestan Province. The CN values of 43 simultaneous storm events were determined using SCS-CN model and the available storm events of each season have been separated and the significant differences of CN values were analyzed using ANOVA method. The Triple Diagram Models provided by Surfer software were used to analyze the relationships of CNs and rainfall components. Results showed that the mean values of CN were 60 for summer and winter seasons and the CN values in the spring and autumn seasons were 50 and 65, respectively. The inter-relationships of CN amounts and rainfall characteristic showed that the high values of CNs were related to high rainfall intensities (>10 mm/hr) and rain-storms with total rainfall more than 40 mm. Also the CN values were about >70 for the storm events with 40-80% runoff coefficient values.

F. Soroush, B. Mostafazadeh-Fard, S. F. Mousavi, F. Abbasi,
Volume 23, Issue 1 (Spring 2019)
Abstract

Infiltration is the most important characteristic in the design and management of any surface irrigation system. Since the hydraulic of flow in meandering furrows is different from the standard furrows, the accuracy of infiltration function parameter estimation methods should be examined for the optimal design and management of meandering furrow irrigation. The main objective of this study was to compare Elliot and Walker’s two-point and two-time methods for estimating the empirical infiltration function parameters of meandering furrow irrigation using four sets of field data. The estimated infiltration functions, as obtained by the two methods, were validated by performing the unsteady flow simulations and using the Slow-change/slow-flow (SC/SF) model. The results showed that Elliot and Walker prediction of the advance trajectories (with a mean RMSE of 0.68 minutes) was comparable to the two-time method (with an average RMSE of 0.66 min). The Nash–Sutcliffe efficiency coefficient for the simulated outflow hydrograph by the two-time and two-point methods was 0.89 and 0.50, respectively, indicating the excellent predictive power of the two-times method. In addition, the two-time method predicted the total volume of infiltration with the less relative error (-1.5%), in comparison to the two-point method (-47.2%). Therefore, the use of post-advance data (such as a two-time method) for infiltration function parameters estimation improves the flow simulation in the meandering furrows.



Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb