Search published articles


Showing 2 results for Mousavi Jahromi

M. Pakmanesh, H. Mousavi Jahromi, A. Khosrojerdi, H. Hassanpour Darvishi, Hossein Babazadeh,
Volume 25, Issue 3 (Fall 2021)
Abstract

The present study is investigated the earth dam stability during drawdown based on both numerical and experimental aspects. To validate the numerical model, a model was performed experimentally. Some soil mechanic tests were carried out through the hydraulic experiments to attain the usage factors of the numerical investigation. To investigate the effect of hydraulic conductivity on the rapid drop of water level and the use of hydraulic parameters of materials, seepage flow in the model was modeled by seep/w software. The input information to the software including hydraulic conductivity and water volume were measured by performing a constant load test and using a disc penetration meter, respectively. After validation of hydraulic conductivity with the experimental model, the results were compared with observed data. Comparison between numerical and laboratory discharge illustrated that the numerical model with laboratory model is well confirmed. In addition, saturated and unsaturated simulations demonstrated that the unsaturated model is highly consistent with the experimental model. It is assumed that due to the drawdown conditions, unsaturated models can achieve high accuracy for simulating the flow through a homogeneous earth dam.

H. Daghigh, H. Mousavi Jahromi, A. Khosrojerdi, H. Hassanpour Darvishi,
Volume 26, Issue 3 (Fall 2022)
Abstract

The existence of silty sand in the infrastructure under concrete constructions, hydraulic structures, and irrigation systems has always caused challenges. Improving this kind of soil is always a challenging approach to increase compressive strength and shear stress. There is a conception that adding some extra material such as concrete can increase the stability of this soil against contributed forces. The present study investigated the effects of curing time (3, 7, 14, 21, and 28 days) and different percentages of various additives (3%, 5%, and 7%) on the strength of the silty sand soils. A series of laboratory tests were carried out to measure the Uniaxial Compressive Strength (UCS) and California Bearing Ratio (CBR) by evaluating the effect of additives on the strength parameters of silty sand soil. In total, 299 experimental tests have been conducted in the soil mechanics laboratory of SRBIAU. Results indicated that adding additives such as concrete to silty sand soil improved significantly the compressive strength and shear strength. The comparisons among the experimental test illustrate that due to increasing the curing time, the aforementioned parameters were increased significantly; however, Confix and Bentonite aggregates did not have a marginal effect on the compressive strength and shear strength. Also, after the 21st day of the curing time, the rate of increment of the UCS and CBR reached slightly and then attained a constant value. Also, after this duration, the curing time is an independent factor in the variation of the UCS and CBR tests. Furthermore, the addition of 5% Pozzolana cement and 7% Portland cement with 28 days of curing had the highest CBR number and UCS resistance of 176.26 and 17.58 kg/cm2, respectively. Also, the sketch of the different failure patterns was shown during the curing time. Finally, by increasing the curing time, the behavior of specimens from semi-brittle to brittle made them harder.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb