Search published articles


Showing 2 results for N. Dadashi

N. Dadashi, M. R. Khajehpour,
Volume 7, Issue 4 (winter 2004)
Abstract

A field experiment was conducted in 2000 at the Agricultural Research Station, Isfahan University of Technology, to model the response of four safflower genotypes to day length and temperature changes under field conditions. Five planting dates (March 12, April 12, May 10, June 8, and July 12) and four safflower genotypes (Arak 2811, local variety Koseh, Nebraska 10 and Varamin 295) were evaluated using a randomized complete block design with split-plot layout in three replications. Date of planting was considered as the main plot and cultivars were randomized in the sub-plots. Number of days from planting (P) to emergence (E), stem elongation (SE) to head visible (HV), and HV to flowering initiation (FI) significantly reduced with delay in planting as the result of increase in temperature during these periods. Number of days from P to SE, duration of flowering (DF) and termination of flowering (TF) to physiological maturity (PM) were significantly affected by planting date and reduced as day length increased. The same was observed in the case of number of days from P to 50% flowering (MF) and to PM. Large co-variation of day length with temperature may explain a portion of day length contribution to the variation in the above periods. Varamin 295 was later than other genotypes with respect to the duration from P to HV, and specially, for rosette duration. In addition and for unknown reasons, the rate of development (RD) of Varamin 295 at all developmental periods could not be explained by day length and/or temperature variables. Among other genotypes, Koseh with 125 days, and Nebrska 10 with 118 days from P to PM were the latest and the earliest genotypes, respectively. The response of Koseh to planting dates, as measured by the duration of various developmental stages, differed from Arak 2811 and Nebraska 10. This was attributed to the probable response of Koseh to day length. RD of Koseh, Arak 2811, and Nebraska 10 during P to MF was explained by a linear regression and RD of Koseh during P to PM by a polynomial regression with day length by mean temperature as an independent variable. RD of Arak 2811 and Nebraska 10 during P to PM was explained by minimum temperature. It seems that partial sensitivity of Koseh to day length has a considerable significance in its adaptation to environmental conditions prevailing in the summer under Isfahan climatic conditions.
N. Dadashi, M. R. Khajehpour,
Volume 8, Issue 3 (fall 2004)
Abstract

Although safflower is known to be a cool-season crop, it is usually planted as a summer crop in Isfahan. Thus, an experiment was conducted in 2000 at the Agricultural Research Station, Isfahan University of Technology, to study the effects of date of planting on growth, yield components, and seed yield of safflower. Five planting dates (March 12, April 12, May 10, June 8, and July 12) and four safflower genotypes (Arak 2811, local variety Koseh, Nebraska 10, and Veramin 295) were evaluated using a randomized complete block design with split-plot layout in three replications. Date of planting was considered as the main plot and cultivars were randomized in sub-plots. Delay in planting from March 12 to may 10 reduced plant dry weight per unit area, number of heads per plant, number of seeds per head, seed yield per unit area, harvest index and petal yield. The above traits increased as planting was further delayed from May 10 to June 8. Highest seed oil and lowest seed protein contents were also obtained for this planting date. Plants of July 12 planting date did not reach physiological maturity. Among the genotypes evaluated and over planting dates, the highest and lowest number of heads per plant, 1000-seed weight, and seed yield were produced byArak 2811 and Veramin 295 (mean of the first and second planting dates), respectively. Highest seed yield (4512 kg ha

-1) was produced by local variety Koseh in June 8 planting date. It might be concluded that this variety has adapted to the summer planting conditions of Isfahan by natural selection.

Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb