Search published articles


Showing 12 results for N. Karimian

A. Ronaghi, Y. Parvizi, N. Karimian,
Volume 5, Issue 4 (winter 2002)
Abstract

Nitrogen is usually the most limiting nutrient for crop production. Manganese deficiency in some calcareous soils of Iran has been reported. The objective of this study was to evaluate the effect of N and Mn on the growth and chemical composition of spinach (Spinacia oleracea L.) under greenhouse conditions. The experiment was conducted in a soil from Chitgar series (Fine-loamy, carbonatic, thermic, Calcixerollic Xerochrepts). Treatments consisted of factorial arrangement of five N rates (0, 50, 100, 200 and 400 mg kg-1 as NH4NO3) and three Mn rates (0, 15 and 30 mg kg-1 as MnSO4) in a completely randomized design with four replications. Plants were allowed to grow for 60 days and a hand-held SPAD-502 chlorophyll meter was used to evaluate leaf chlorophyll status at harvest.

 Results showed that N and Mn application increased shoot dry weight, N and Mn concentrations and total uptake, Mn:Fe ratios and chlorophyll readings, significantly. Nitrogen increased concentrations and total uptake of Zn, Cu and total uptake of Fe in plants, but decreased Fe concentration. Addition of Mn decreased Fe and Zn concentrations in spinach but increased total uptake of Fe and Cu. When maximum dry matter was obtained, the chlorophyll meter reading was about 40. A similar study should be carried out under field conditions before the N and Mn fertilizer recommendations for spinach can be made.


A. Ronaghi, M. R. Chakerolhosseini, N. Karimian,
Volume 6, Issue 2 (summer 2002)
Abstract

Phosphorus (P) and iron (Fe) are essential nutrients for plants. Iron availability is low in calcareous soils of Iran due to the excessive amounts of CaCO3 and high pH. Overfertilization of P fertilizers may also decrease Fe availability. The objective of this study was to evaluate the effect of P and Fe on the growth and chemical composition of corn (Zea mays L.) under greenhouse conditions. Treatments consisted of a factorial arrangement of P rates (0, 40, 80, 120 and 160 mg kg-1 as KH2PO4) and Fe rates (0, 2.5, 5 and 10 mg kg-1 as Fe EDDHA) in a completely randomized design with four replications. Plants were grown for 8 weeks in a loamy soil, calssified as Chitgar series (fine-loamy, carbonatic, thermic, Typic Calcixerepts). Results showd that P application up to 80 mg kg-1 increased corn top dry matter. Corn P concentration and total uptake increased by P application but decreased by Fe application. Application of Fe up to 5 mg kg-1 increased dry matter but decreased it at higher rates. Concentration and total uptake of Fe increased by Fe application but decreased by P application. Zinc and copper concentrations decresed significantly when P was added. Manganese concentration increased at 40 mg P kg-1 but decreased at higher rates. Iron application decreased zinc and manganese concentrations but had no effect on copper.
M. R. Chakerolhosseini, A. Ronaghi, M. Maftoun, N. Karimian,
Volume 6, Issue 4 (winter 2003)
Abstract

Iron (Fe) availability is low in calcareous soils of Iran due to high pH levels and presence of excessive amounts of CaCO3. Overfertilization by phosphorus (P) fertilizers may also decrease Fe availability. The objective of this study was to evaluate the effects of P, Fe and their interactions on the growth and chemical composition of soybean [Glycine max (L.) Merrill] under greenhouse conditions. Treatments consisted of a factorial arrangement of P rates (0, 40, 80, 120 and 160 mg kg-1 as KH2PO4) and Fe rates (0, 2.5, 5 and 10 mg kg-1 as FeEDDHA) in a completely randomized design with four replications. Plants were grown for 8 weeks in a loamy soil, classified as Chitgar series (fine-loamy, carbonatic, thermic, Typic Calcixerepts). Results showed that P application up to 80 and Fe at 2.5 mg kg-1 increased shoot dry matter. Phosphorus concentration, total uptake and P:Fe ratio in soybean increased by P application but decreased by Fe application. Application of Fe up to 2.5 mg kg-1 increased dry matter but decreased it at higher rates. Concentration and total uptake of Fe increased by Fe application but decreased by P application. Interaction of P and Fe had no effect on shoot dry matter. Zinc (Zn) and copper (Cu) concentrations decreased significantly when P was added and manganese (Mn) concentration increased up to 40 mg P kg-1 but decreased at higher rates. Iron application had no effect on soybean Zn and Cu concentrations but decreased Mn concentration at all rates. Prior to any fertilizer recommendations, it is necessary to study the effects of P, Fe and their interactions on soybean under field conditions.
J. Yasrebi, N. Karimian, M. Maftoun, A. Abtahi, A. Ronaghi, M. T. Assad,
Volume 7, Issue 4 (winter 2004)
Abstract

Twenty-five surface samples of calcareous soils of Fars Province were used to study the distribution of different nitrogen (N) forms to determine the relationship between the N forms and soil charcteristics, and to obtain regression equations for prediction of N forms from soil characteristics. The forms determined were: soil total nitrogen NO3-N by phenol disulfunic acid NO3-N extractable by 2 M KCl NH4-N extractable by 2 M KCl, 1 N sulfuric acid, and 0.25 N sodium hydroxide oxidative released N by acid permanganate and alkaline permanganate and NH4-N extractable by 2 M KCl at 100 oC. The highest amount of N was that released by alkaline permanganate which constituted 4.47% of soil total N and the lowest form was exchangeable NH4+ which amounted to only 0.6% of total N. Water soluble and exchangeable forms accounted for less than 2% of total N. Highly significant correlations were found between total N and acid permanganate-N (r=0.931) and total N and alkaline permanganate-N (r=0.850). Highly significant regression equations were obtained for prediction of soil total N, acid permanganate-N, and alkaline permanganate-N from soil organic matter (OM), which is an indication of a close relationship of these N forms with OM.
A. H. Khoshgoftarmanesh, H. Shariatmadari, N. Karimian,
Volume 7, Issue 4 (winter 2004)
Abstract

A factorial experiment with two levels of Zn (0 and 1.5 mg Zn kg-1), five salinity levels of irrigation water (0, 60, 120 and 180 mM NaC1, and 120 mM NaNO3) in three replications was conducted. Wheat (Triticum aestivum cv. Roshan) was seeded in pots. After plant harvesting, zinc and cadmium concentrations were determined in the shoot. Activities of metal species in the soil solution were predicted using the computer program MINTEQA2. Treating the soil with NaC1-salinized water increased total concentration of cadmium (CdT) as well as Cd2+, CdC102, and CdCl+ species whereas, NaNO3 treatment had no significant effect on CdT. Shoot Cd concentrations were positively related to CdT and soil solution Cl- but negatively related to ZnT. Application of Zn-fertilizer decreased Cd and increased Zn concentrations in shoot, significantly. The results of this experiment showed that Cl- has an effective role in increasing mobility of soil Cd and its uptake by plant.
J A. Aboutalebi, E. Tafazoli, B. Kholdebarin, N. Karimian,
Volume 9, Issue 4 (winter 2006)
Abstract

The Effect of various NaCl levels on the shoot content of trace elements, in the seedlings of five citrus species namely: Bakraei (Citrus reteculata X C. limetta), Volkamer lemon(C. volkameriana), Sour orange(C. aurantium), Sweet lime (C. limetta) and Mexican lime(C. aurantifolia), were studied in a glasshouse, by a randomized complete block design with factorial arrangement and four replications. One-year old seedlings of each species were grown in the pots, containing native soil (pH=8.2) and irrigated with water supplemented with 0(control), 20, 40 and 60 mM NaCl. At the end of experiment, the amount of Fe, Zn, Mn, Cu, Cl and B in shoots were determined. The amount of trace elements varied among the species even in the control plants (no salt). Salinity had different effects on the shoot content of trace elements. Salinity reduced Fe content in the shoot of all species except in Bakraii and sweet lime and increased the amount of Zn in the shoot of all species except in Bakraii. The Mn content was reduced in the all species but increased in sour orange. Salinity reduced the amount of Cu in the shoot of volkamerina but had no effect in the other species. The amount of Cl increased in the shoot of all species with salinity. Boron content in the shoot of all species except in sour orange, increased with low salinity level but decreased with increased salinity levels. However in sour orange, salinity in the all levels decreased the amount of B in the shoot of seedlings.
A. Reyhani Tabar, N. Karimian, M. Muazardalan, G. R. Savaghebi, M. R. Ghannadha,
Volume 10, Issue 3 (fall 2006)
Abstract

Information about forms of zinc (Zn) is important for the evaluation of its status in soil and also understanding of the soil fertility and chemistry. To obtain such information, amounts and distribution of Zn in different fractions of 20 soil samples of Tehran province, Iran were determined by sequential extraction method and their relationships with each other and with soil characteristics were investigated. Total Zn of soils ranged from 70 to 169.9 mg/kg-1. The amount of different Zn forms relative to the sum of forms was determined to be as follows: organic less than 0.1, soluble+exchangeable 0.1, manganese-oxide-associated 0.9, carbonate 1.6, crystalline iron-oxide-associated 3.8, amorphous iron-oxide-associated 4.2, and residual form 89.3%. Simple correlation coefficients showed that pH had a negative significant correlation with all forms of Zn except organic. Silt and clay contents had significant positive correlations with total, residual, and crystalline iron-oxide-asociated Zn but CEC had significant correlation only with total Zn. Calcium carbonate equivalent showed a significant correlation with soluble+exchangeable, manganese-oxide-associated and amorphous iron-oxide-associated Zn. DTPA-extractable Zn was significantly correlated with soluble+exchangeable, carbonate, and amorphous iron-oxide-associated Zn. A significant correlation was also observed between the Zn forms themselves, which is presumably a reflection of the existence of a dynamic relation between the chemical forms of an element in soil.
A. Aboutalebi, E. Tafazoly, B. Kholdebarin, N. Karimian,
Volume 11, Issue 1 (spring 2007)
Abstract

This study was conducted to evaluate the effect of salinity on concentration of potassium (K), sodium (Na) and chloride (Cl) ions, in sweet lime budded on five citrus rootstocks, including Bakraii (mandarin x sweet lime), Volcameriana, Sour orange, Sweet lime and Mexican lime in a glasshouse, using a randomized completely design with factorial arrangement and four replications. Rootstocks had great effect on the concentration of ions in scion. Concentration and distribution of ions were significantly different in control and other treatments. Salinity increased Na and Cl ions in shoots and roots, but the rate of increase varied among rootstocks and treatments. Lowest concentration of Na and Cl ions were in shoot of scion on Volkameriana. Under salinity stress, K concentration increased in shoots of scion on Sour orange and Bakraei and decreased it on other rootstocks. Salinity increased K concentration in roots of all rootstocks except for Mexican lime.
M. Rajaie, N. Karimian,
Volume 11, Issue 1 (spring 2007)
Abstract

Cadmium (Cd) and its rate in soil have received lots of attention because it is easily taken up by plant root, making it 20 times more toxic in comparison with other heavy metals. Knowledge about the factors affecting Cd availability and conversion of its chemical forms is, therefore, important. Sequential extraction has been used as a suitable method for identification of chemical forms and their relationship with plant availability, but in soils of Iran less attention has been paid to studying the change in chemical forms as affected by time. The present research was designed to study the change in Cd chemical forms as affected by application rate and time of incubation in two soil textural classes. A clay loam calcareous soil [Fine, mixed (calcareous), mesic Typic Calcixerepts] was converted to sandy loam soil by adding pure quartz sand and both soils were treated with 0, 5, 15, 30, and 60 mg Cd / kg soil as cadmium sulfate and incubated at room temperature near field capacity moisture. After 0, 1, 2, 4, 8, and 16 weeks, chemical forms of Cd were determined by sequential extraction. Results showed that, depending on the textural classes, about 82 and 87 % of applied Cd was converted to soluble+exchangeable, carbonate, and organic forms. In both soils carbonate fraction was dominant. Conversion of applied Cd to soluble+exchangeable and carbonate forms in sandy loam was higher than in clay loam. For organic, manganese oxide, amorphous iron oxide, and residual forms, the reverse was true. The crystalline iron oxide form was less than detection limit of atomic absorption in both textural classes. Increasing the application rate caused an increase in all forms of Cd but the percentage increase depended on the capacity of different soil components for Cd retention. Carbonate showed the highest capacity for retention. The effect of incubation time on conversion of Cd to different forms was significant. However, in almost all treatments more than 80 % of added Cd was converted to carbonate and organic forms immediately, and the proportion approximately stayed the same throughout the course of experiment.
S. A. Ghaffari Nejad, N. Karimian,
Volume 11, Issue 1 (spring 2007)
Abstract

In order to investigate mineral manganese forms and their relations with plant responses, 22 soil samples from Fars province (0-20 cm) were in a greenhouse experiment filled in 3 liter pots, and soybean (Glycine max (L.) merr.,CV.Williams) was grown for 7 weeks. Chemical forms of manganese were determined in soils by warden and Reisenauer sequential extraction method (readily soluble, weakly adsorbed, carbonate bound and oxide bound extracted with Ca(No3)2, Ca DTPA +Na2B4O7, HNO3 and NH2OH. HCl, respectively) after harvesting the plants. Results showed that the amount of Mn in different forms was in the following order: Carbonatic Mn >Mn Oxides >Weakly adsorbed Mn > Soluble Mn. Regression equations between soil properties and Mn forms showed a significant correlation between calcium carbonate equivalent and carbonate bound Mn. Significant correlation between Carbonate bound Mn and concentration of Mn in the aerial part of soybean showed that this fraction plays an important role in plant nutrition.
M. Zahedifar , N. Karimian , A. Ronaghi , J. Yasrebi , Y. Emam ,
Volume 14, Issue 54 (winter 2011)
Abstract

The effect of phosphorus (P) (0, 25, and 50 mg kg-1 soil as Ca(H2PO4)2) and organic matter (OM) (0, and 2% w/w feedlot cattle manure) on P and zinc (Zn) distribution in different parts of wheat plant (Triticum aestivum L.) at various growth stages and its relationship with soil P and Zn were determined in greenhouse condition. In all pots, shoot P concentration decreased as plant growth proceeded. Phosphorus concentration of shoot and flag leaf decreased from 7th to 9th stage of growth, whereas that of spickle increased. Spickle P uptake and Zn uptake of stem, shoot, flag leaf, and spickle increased with proceeding of wheat growth. Phosphorus uptake of shoot increased from 3th to 9th growth stages, whereas P uptake of stem and flag leaf decreased from 7th to 9th growth stages. Soil P and Zn concentrations increased with application of P and OM and plant growth. The trend of P and Zn changes in shoot, stem and flag leaf was similar. It is, therefore, concluded that analyzing flag leaf for P and Zn concentrations be used for prediction of plant nutritional status of those nutrient elements in cases where such information is needed.
M. B. Heyderianpour , A. M. Sameni, J. Sheikhi, N. Karimian, M. Zarei,
Volume 18, Issue 67 (Spring 2014)
Abstract

A study was conducted to evaluate the effect of vermicompost and nitrogen (N) on growth, nutrient concentration and uptake of N, phosphorus (P), potassium (K), iron (Fe), zinc (Zn), manganese (Mn), and copper (Cu) in sunflower shoots as a factorial experiment arranged in completely randomized design (CRD) with three replications under greenhouse conditions. Treatments included three levels of vermicompost (0, 2.5, and 5 % by w/w) and three N levels (0, 90, and 180 mg kg-1) as urea. Application of 2.5% vermicompost significantly increased the average fresh and dry weights, and uptake of K, Fe, Zn, Mn, and Cu of shoots as compared when no vermicompost was applied, but decreased Zn and Cu concentrations. Application of 90 mg N, increased fresh and dry weights, and concentration of N, Zn, and Mn, total uptake of N, P, K, Fe, Zn, Mn, and Cu in sunflower shoots, but decreased P concentration. Application of 180 mg N increased total N uptake than that of 90 mg N kg-1 treatment. Combination of 2.5% vermicompost with 90 mg N, significantly (p<0.05) increased dry matter yield of sunflower as compared to 2.5% vermicompost without N treatment

Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb