Search published articles


Showing 2 results for Nobakht

S. Azizpour, P. Fathi, K. Nobakht-Vakili,
Volume 16, Issue 60 (Summer 2012)
Abstract

Soil saturated hydraulic conductivity (k) and effective porosity (f) are the most important parameters to simulate the processes associated with irrigation, drainage, hydrology, leaching and other agricultural and hydrological processes. Present methods to measure these parameters are often difficult, time consuming and costly. Therefore, a method which provides more accurate estimates of these parameters is essential and is considered inevitable. The purpose of this study was simultaneous estimation of k and f using approach inverse problem. In this study, analytical drainage model of Glover-Dam was used to simulate the inverse problem method. Also, genetic algorithm was used as an optimization technique for determination of optimal values of k and f. In order to measure the data required for calibration and evaluation of the proposed inverse problem model, a physical model was designed and constructed in the laboratory. The results showed that the proposed method is good for simultaneosly estimating simultaneous soil k and f. Also with variable f assumption, the prediction error of water table around the drainage was reduced significantly.
M. Karim Zadeh, J. Zahiri, V. Nobakht,
Volume 26, Issue 4 (Winiter 2023)
Abstract

Reservoir dams have had problems despite all the benefits for humans. one of the most important issues is exposing a large amount of water in contact with the air causing a large amount of water to evaporate. Using chemical methods including heavy alcohols is one of the evaporation suppression methods. In this study, three emulsions of octadecanol, hexadecanol, and a combination of octadecanol, and hexadecanol along with Brij-35 and two physical methods of the canopy and floating balls were used to evaluate the performance of different emulsions. A one-way analysis of variance was applied to compare the mean of evaporation in different chemical and physical methods and a two-way analysis of variance was performed to investigate the main and interaction effects of different meteorological parameters on the value of evaporation. The mean comparison of the evaporation in different methods showed that the two physical methods of the canopy and floating balls had better performance than the chemical methods, and the octadecanol was more efficient than the two other chemical methods. The results of one-way ANOVA showed that among the chemical methods, the octadecanol had no significant difference with floating balls at a 99% probability level (P <0.01). Two-way ANOVA indicated that air temperature and relative humidity had the greatest effect on evaporation. Examination of the effect of different levels of meteorological parameters on the performance of evaporation reduction methods showed that at low temperatures, octadecanol had poor performance than the two physical methods but with increasing temperature, its performance improved. In addition, this monolayer had a suitable performance at low wind speeds compared to physical methods. By increasing wind speed, its performance is severely affected and its efficiency decreases. So, at temperatures above 37° C, an increase in wind speed from 3.5 m/s to above 8.7 m/s has increased evaporation by more than 50%. The effects of monolayers and other evaporation suppression methods on the quality characteristics of the water including dissolved oxygen are significant and should be investigated in future research.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb