Search published articles


Showing 7 results for Nozari

A. Taheri Tizro, H. Nozari, H. Alikhani,
Volume 20, Issue 76 (Summer 2016)
Abstract

To procure the status of groundwater level fluctuations in arid and semi-arid areas, it is necessary to obtain accurate forecast of fluctuations data. Time series as a linear model have been utilized to generate synthetic data and predict future groundwater level. Minitab17 software and monthly depth of groundwater level data of 20 years (1991-2011) for 25 piezometric wells of plain were used. Time series models of each well were selected and 5 years temporal forecasting was accomplished. The predicted depth of groundwater level data was converted to Groundwater level data using ARCGIS10 and GS+5.1.1 software. Ordinary kriging with a spherical variogram was selected for interpolation of groundwater level. Five years spatial forecasting was done and spatial forecasting and groundwater level drop forecasting maps were prepared. Forecasting results of groundwater level show that over the next 5 years, the area covered by two intervals of groundwater level, 1100-1140 m and 1140-1180 m, will increase and the area covered by three ranges of 1180 -1220 m, 1220-1260 m, and 1260-1300 m, will decline. Also, according to the 5-year groundwater level drop forecasting map of the plain, the highest level of groundwater level drop, more than 16 meters for Qasemabad bozorg areas, located in North East and central of the plain, and the lowest level of the groundwater level drop, about 0.5 m for Mohammad Abad Afkham Aldoleh Lands, located in outlet area of the plain, have been predicted.


M. M. Matinzadeh, J. Abedi Koupai, H. Nozari, A. Sadeghi Lari, M. Shayannejad,
Volume 20, Issue 76 (Summer 2016)
Abstract

In this research, a comprehensive simulation model for water cycle and the nitrogen dynamics modeling including all the important processes involved in nitrogen transformations such as fertilizer dissolution, nitrification, denitrification, ammonium volatilization, mineralization, immobilization as well as all the important nitrogen transportation processes including nitrogen uptake by the plant, soil particles adsorption, upward flux, surface runoff losses and drain losses, was used for fertilizer management modeling in a sugarcane farmland in Imam Khomeini Agro-Industrial Company using a system dynamics approach. For evaluating the model the data collected from Imam Agro-Industrial Company equipped with a tile drainage system with shallow ground water and located in Khuzestan province, Iran, were used. The statistical analysis of the observed and simulated data showed that the RMSE for determining the accuracy of simulation of the nitrate and ammonium concentration in drainage water is 1.73 mg/L and 0.48 mg/L, respectively. The results indicated that there is good agreement between the observed and the simulated data. Nine scenarios of fertilization at different levels of urea fertilizer were modeled including one scenario of 400 kg/ha, two spilit scenarios of 350 kg/ha, two spilit scenarios of 325 kg/ha, two spilit scenarios of 300 kg/ha, one scenario of 280 kg/ha and one scenario of 210 kg/ha. Results of the modeling showed that the scenario of 210 kg/ha has the highest nitrogen use efficiency (52.3%) and the lowest nitrogen losses consisted of denitrification, ammonium volatilization and drainage losses (17.82, 7.16 and 92.59 kg/ha, respectively). The results revealed that increasing the consumption of urea fertilizer greater than 210 kg/ha increased the overall nitrogen losses and reduced the nitrogen use efficiency. Meanwhile, this model can be used for managing the fertilizer and controlling the nitrate and ammonium concentrations in the drainage water to prevent the environmental pollution. Also, the system dynamics approach was found as an effective technique for simulating the complex water-soil-plant-drainage system.


H. Nozari, S. Azadi, V. Rezaverdinejad,
Volume 23, Issue 1 (Spring 2019)
Abstract

Due to the growing population, crop production is one of the essential needs of the society. Since soil and water salinity can have a great impact on the crop yield loss; so, the appropriate irrigation method can be applied to reduce these effects. In this study, the system dynamics model was developed using VENSIM. The model simulated the effect of salinity and water stress on the crop yield, moisture and salinity of the root zone. In order to calibrate and validate the model results, 9 treatments data were collected from the Right Abshar Irrigation Network, on the Zayandehrud basin. After statistical analysis and calculation of RMSE index and the standard error, the fit between the measured and simulated crop yield, the moisture and salinity of root zone was calculated. The average of these indexes for all treatments was 2776.98 kg/ha and 0.07 for crop yield, 0.026 and 0.09 for soil moisture and final, 0.54 dS/m and 0.08 for the salinity of root zone, respectively. The results showed that the model could be calibrated accurately and completely in estimating the crop yield with the reasonable accuracy.

M. M. Matinzadeh, J. Abedi Koupai, A. Sadeghi-Lari, H. Nozari, M. Shayannejad,
Volume 23, Issue 3 (Fall 2019)
Abstract

Selection of drainage equation with acceptable accuracy has always been a challenge for designers to design subsurface drainage systems. In this research, seven steady state drainage equations were used for predicting daily and cumulative drainage rate on a farmland of sugarcane in Imam agro-industrial Company. These drainage equation included Hooghoudt, Ernst, Kirkham and Dagan that have been developed in the past and Mishra and Singh, Henine and Yousfi et al that recently developed. The statistical indices consist of P-value, RMSE, R2 and Percentage Error of estimating cumulative drainage rate were calculated for Hooghoudt equation 0.9501, 1.49 (mm/day), 0.80 and -0.19%, respectively. For Ernst equation 0.0001, 2.46 (mm/day), 0.34 and 16.98%, respectively. The result of performance of drainage equations revealed that Hooghoudt and Ernst equation were as the equations with the highest and lowest accuracy in predicting drainage rate, respectively. Also from the newly developed equations, the Yousfi et al equation was found with relatively well accuracy to predict the drainage rate. This equation was placed in second rank after Hooghoudt equation and other equations showed poor performance. Thus, with selection of the appropriate drainage rate, the Hooghoudt equation is suggested for designing of drain spacing in medium to heavy textured soils such as sugarcane agro-industrial.

M.m. Matinzadeh, J. Abedi Koupai, M. Shayannejad, A. Sadeghi-Lari , H. Nozari,
Volume 25, Issue 4 (Winiter 2022)
Abstract

Using water and fertilizer management at the farm level can be increased water use efficiency and reduce the volume of drainage water, fertilizer losses, and other pollutants in farmland with deep underground drains such as Khuzestan agro-industrial Companies. In the present study, a comprehensive simulation model for the water cycle and the nitrogen dynamics modeling was used for water and fertilizer management modeling on farmland of sugarcane in Imam Agro-Industrial Company using a system dynamics approach. To reduce irrigation water consumption and nitrogen fertilizer losses, five different scenarios were considered including four scenarios of water management consist of 5, 10, 15, and 20 percent reduction in the amount of irrigation water (I1, I2, I3, and I4) compared to the current situation of irrigation in Imam agro-industrial Company (I0), and one scenario of integrated water and fertilizer management (20% reduction in the amount of irrigation water and urea fertilizer 210 Kg/ha, I4F). The results of modeling showed that the scenario of I4F caused to reduce 31, 70, 71, 70, and 85 percent of the cumulative volume of drainage water, cumulative nitrate and ammonium losses, total losses of cumulative nitrate, and ammonium by tile-drain and cumulative losses of denitrification process, respectively. Thus, the implementation of this scenario, not only saves water and fertilizer consumption but also reduces environmental pollution effectively. So the scenario of I4F (amount of irrigation water for six months 2656 mm and urea fertilizer 210 Kg/ha) is recommended for sugarcane in the Imam agro-industrial Company.

S. Azadi, H. Nozari, S. Marofi, Dr. B. Ghanbarian,
Volume 26, Issue 1 (Spring 2022)
Abstract

In the present study, a model was developed using a system dynamics approach to simulate and optimize the profitability of crops of the Jofeyr (Isargaran) Irrigation and Drainage Network located in Khuzestan Province. To validate the results, the statistical indicators of root mean square error (RMSE), standard error (SE), mean biased error (MBE), and determination coefficient (R2) were used. To validate the simulation results of the benefit-cost ratio, the values of these indicators were obtained 0.25, 0.19, 0.005, and 0.96, respectively. Then, to determine the optimal cultivated area of the network and increase the profitability, the cropping pattern was determined both non-stepwise and stepwise in 2013 to 2017 cropping years. In the non-stepwise, the cultivated area of each crop changed from zero to 2 times of current situation. In stepwise, due to social and cultural conditions of inhabitants, this change was slow and 10% of the current situation every year. The analysis of the results showed the success of the model in optimizing and achieving the desired goals and the total benefit-cost ratio increased in all years both non-stepwise and stepwise. For example, in 2017 compared to 2016, production costs decreased by 7.1 percent and sales prices increased by 5.8 percent, and increased the benefit-cost in 2017 compared to the previous year. The results showed that the present model has good accuracy in simulating and optimizing the irrigation network, its cropping pattern, and defining other scenarios.

S. Azadi, H. Nozari, S. Marofi, B. Ghanbarian,
Volume 27, Issue 3 (Fall 2023)
Abstract

One of the strategies for agricultural development is the optimal use of irrigation and drainage networks, which will lead to higher productivity and environmental protection. The present study used the system dynamics approach to develop a model for simulating the cultivated area of the Shahid Chamran irrigation and drainage network located in Khuzestan province by considering environmental issues. Limit test and sensitivity analysis were used for model validation. The results showed the proper performance of the model and the logical relationship between its parameters. Also, the cropping pattern of the network was determined in two modes of non-stepwise and stepwise changes to determine the optimal cultivated area of the Shahid Chamran network with environmental objectives and minimize the amount of salt from drains. The results showed that the amount of optimized output salt from the network has decreased in both non-stepwise and stepwise changes compared to the existing situation in the region. The total output salt in the current situation, from 2013 to 2017, was obtained at 2799, 2649, 2749, 2298, and 2004 tons.day-1, respectively, in the stepwise changes, are 2739, 2546, 2644, 2223, and 1952 tons.day-1, and finally, in the non-stepwise changes, are 2363, 2309, 2481, 2151, and 1912 tons.day-1. The results showed that the non-stepwise changes due to considered limitations have been more successful in reducing output salt than the stepwise changes. The analysis of the results showed the model's success in optimizing and achieving the desired goals. The results showed that the present model has good accuracy in simulating and optimizing the irrigation network, cropping pattern, and defining other scenarios.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb