Search published articles


Showing 4 results for Ostan

S. Soodaee Mashaee, N. Aliasgharzade, S.h. Ostan,
Volume 11, Issue 42 (winter 2008)
Abstract

  Understanding nitrogen mineralization from different organic sources should be a key factor in developing efficient prediction of the need for nitrogen fertilization with minimal negative environmental impact. In order to investigate nitrogen mineralization rate in soils amended with compost, vermicompost and cattle manure, an experiment was done as factorial in a randomized complete block design in three replications. Four treatments (compost, vermicompost, cattle manure and soil alone), two temperature levels (8 and 25 0C) and two moisture levels (50% and 85% FC) were used for the 90 - day incubation study. Ammonium and nitrate were measured by spectrophotometer method. Results indicated that the mixed first-and zero-order kinetics model is the best model for our data. Cattle manure treatment had the highest Nmin at 25 0C (87.78 mgN/kg equal to 14.54% Ntotal) and the least value (23.62 mgN/kg equal to 4.62% Ntotal) was obtained for the compost treatment at 8 0C. N0k (nitrogen availability index) for treatments was in the following order: Cattle manure>Vermicompost >Compost. With increasing the temperature and moisture, N mineralization increased. Also Nmin positively correlated with N0 (r =0.583*), and N0k (r =0.834**).


V. Sarvi Moghanloo , M. Chorom, H. Motamedi , B. Alizadeh, Sh. Ostan,
Volume 15, Issue 56 (sumer 2011)
Abstract

Soil enzymes are the catalysts for important metabolic process functions including the decomposition of organic inputs and the detoxification of xenobiotics. The aim of this research was to determine the pattern of variation in the activities of dehydrogenase, urease, lipase and phosphatase enzymes, determining the number of hetrotrophic and degrading bacteria and measuring the soil respiration and yield plants during the bioremediation of oil contaminated soils. To this aim, the soil deliberately contaminated with crude oil at a 1 and 2 wt% rate and in four treatments including: plant multiflorum (T1), plant multiflorum with mycorrhiza inoculation (T2), plant multiflorum with oil degrading bacteria inoculation (T3), plant multiflorum with mycorrhiza and oil degrading bacteria inoculation (T4) was employed for bioremediation of oil contaminated soil. The above parameters were determined in five stages during bioremediation and ultimately for the yield of plants at the end of this period .The results showed that the activity of urease and hydrogenase anzymes were increased or decreased parallel to contaminant increase and decrease. In contrast, the activity of lipase anzyme was decreased with contaminant increase and increased with contaminant decrease. Therfore, it can be a good choice for monitoring of bioremediation of contaminated soils. The results showed that the number of degrading and hetrotrophic microorganisms were increased by increasing the amount of contamination and the number of degrading and heterotrophic bacteria were decreased parallel to contaminant decreasing especially in those samples treated with mycorrhiza inoculation. The plant yield and amount of degradation of oil compounds were highest in mycorrhiza plus degrading bacteria treatment.
M. Najafi-Ghiri, Y. Kiassi, F. Khademi, A. R. Mahmoodi, H. R. Boostani, Dr M. Mokarram, M. J. Gholami,
Volume 22, Issue 3 (Fall 2018)
Abstract

Little information is available regarding the effect of road on the adjacent vegetation and soil. The current investigation was done to study the effect of Darab-Bandar Abbas road on vegetation, soil properties and nutrient availability of the adjacent soils. For this purpose, eighteen soil samples in three different regions from the roadside and the adjacent land (50m from the road edge) were collected and the vegetation type and density were determined. Soil properties and the availability of N, P, K, Fe, Mn, Zn and Cu were also determined. Roadside soil had more organic matter and sand contents and less clay content and pH in comparison to the adjacent lands. The mean contents of N, Fe, Zn and Cu available in the roadside soils were 0.13%, 4.2, 3.2 and 0.7 mg kg-1, respectively; these were significantly more than those of the adjacent lands (0.06%, 2.8, 0.6 and 0.3 mg kg-1, respectively). Vegetation of roadside was more varied, consisting of Artemisia sieberi and Astragalus fasciculifolius. Vegetation cover in the roadside (13.8%) was significantly more than that of the adjacent lands (8.5%). Generally, it could be concluded that roadside soils had a suitable moisture condition and fertility for the vegetation development and this could be considered in the soil conservation management of the roadside soils.

M. Najafi-Ghiri, H.r. Boostani, A. R. Mahmoodi, F. Dehghanpoor, M. Besh,
Volume 23, Issue 4 (winter 2020)
Abstract

Astragalus fasciculifolius is one of the most distributed plant species in the arid and semiarid regions of southern Iran. It may be well grown on roadside. This investigation was carried out to study the effect of road and its traffic intensity on the soil physicochemical properties and plant nutrients availability of roadside and to monitor the concentration of nutrients in the aerial parts of Astragalus fasciculifolius. Thirty soil and plant samples from roadside and 100 m distance from road were randomly collected and some physicochemical soil properties and nutrients availability were determined. Concentrations of the nutrients in the aerial parts of the plants were also determined. The results indicated that roadside soils had more sand and calcium carbonate equivalent than the adjacent lands. Soils of the main roadside had less K and more Fe, Mn, Zn and Cu than the adjacent lands; this difference in local road was observed only for Fe and Cu. Nutrients concentration in the aerial parts of the plants was affected by road, and P, K, Mn and Zn showed significant increases in the roadside plants. Concentrations of P, Fe, Zn and Cu in plants grown in main roadside and concentrations of Fe and Zn in plants grown in the local roadside were correlated with their contents in the soils. The effect of roads on soil properties change and nutrients availability may be related to the addition of road bed and emission of vehicles. Generally, it could be concluded that roadside soils had more suitable water and nutrition conditions for the growth of Astragalus fasciculifolius, as compared to the soils of the adjacent lands.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb