Search published articles


Showing 26 results for Parsa

S.h. Zand-Parsa, Gh.r. Soltani, A.r. Sepaskhah,
Volume 5, Issue 3 (fall 2001)
Abstract

In this study, the optimum irrigation depths for corn grain production under different conditions, i.e. maximum grain yield production and maximum benefit under limited land and water conditions, were determined under sprinkler irrigation in Bajgah (15 km. north of Shiraz).

 The results showed that, the optimum depth of irrigation for maximum grain yield production was 77.0 cm. Because of low price of irrigation water and sensitivity of corn crop to water deficit, the optimum depths of water were 76.8 and 73.4 cm under land and water limitations, respectively. Therefore, under limited water conditions, only 4.7 percent of the full irrigation water (maximum corn grain production) can be saved for maximum profits.


V. Khaksari, S. A. A. Moosavi, S. A. M. Cheraghi, A. A. Kamgar Haghighi, Sh. Zand Parsa,
Volume 10, Issue 2 (summer 2006)
Abstract

Since performing field experiments for determining the optimum amount of water for soil desalinization is costly and time consuming, use of computer models in leaching studies has received more attention. However, the accuracy of the results of these models should be evaluated by comparison with the results of the field experiments. In this study SWAP and LEACHC models were used for the simulation of soil moisture profile and salinity, and the results were compared with those of a field leaching experiment. The SWAP model gave better results in simulating soil moisture movement and profile, compared to LEACHC model, but statistical indexes showed that both models produced satisfactory results in predicting soil moisture profile. LEACHC model gave better results in comparison to SWAP model for the prediction of soil salinity profile at different time, possibly because it takes into account different solute transport mechanisms such as advection, diffusion, dispersion and also chemical interactions such as adsorption, precipitation and dissolution. In spite of the differences between predicted and measured values of salinity in the initial stages of leaching process, both models were able to predict the trend of leaching process with an acceptable accuracy.
A. Majnooni-Heris, Sh. Zand-Parsa, A. R. Sepaskhah, A. A. Kamgar-Haghighi,
Volume 10, Issue 3 (fall 2006)
Abstract

Agricultural investigations use computer models for simulation of crop growth and field water management. By using these models, the effects of plant growth parameters on crop yields are simulated, hence, the experimental costs are reduced. In this paper, the model of MSM (Maize Simulation Model) was calibrated and validated for the prediction of maize forage production at Agricultural College, Shiraz University in 1382 and 1383 by using maize forage yield under furrow irrigation with four irrigation and three nitrogen treatments. Irrigation treatments were I4, I3, I2, and I1, with the depth of water 20% greater than, equal to, 20% and 40% less than potential crop water requirements, respectively. Nitrogen treatments were N3, N2, and N1, with the application of N as urea equal to 300, 150, and 0 kg N ha-1, respectively. After calibration and validation of MSM, it was used to estimate suitable planting dates, forage yield and net requirement of water discharge for planting at different dates. The results indicated that the net requirement of water discharge was reduced by gradual planting at different planting dates. By considering different planting dates for maize, from Ordibehest 20th to Tir 10th, the planting area might be increased 17.9%, compared with single planting date on Ordibehesht 30th under a given farm water discharge and full irrigation.
M. Parsaeian, A. F. Mirlohi, A. M. Rezaie, M. Khayyam Nekoie,
Volume 10, Issue 4 (winter 2007)
Abstract

To determine the role of endophytes in conferring valuable physiological characteristics on and induction inducing cold tolerance in two species of festuca, an experiment was done at Isfahan University of Technology in 2002. Endophyte-infected and non-infected clones from two genotypes of tall fescue and one meadow fescue were prepared and coded 75,83 and 60 respectively. The clones were exposed to cold treatments at 6, -2 and –10C and compared with control treatment at 20C. After three weeks of cold treatments, relative water content of leaf and crown, cell membrane stability (electrolyte leakage), percentage of membrane damage and finally proline content of leaf were measured. The presence of endophyt caused an slight increase in relative water content of leaf and crown. There was considerably higher proline in endophyte-infected plants compared with non-infected ones in both stress and non-stress conditions. Endophytic fungi had strong effects on maintenance of membrane stability and on the decrease of electrolyte leakage at all temperature levels. Among plant genotypes, 83 preformed better for some characteristics, specially in the presence of endophyte, and showed higher cold tolerance.
A. Majnooni-Heris, Sh. Zand - Parsa, A. R. Sepaskhah, A. A. Kamgar-Haghighi,
Volume 11, Issue 41 (fall 2007)
Abstract

Optimal crop water requirement is needed for precise irrigation scheduling. Prediction of crop water requirements is a basic factor to achieve this goal. In this study, maize potential evapotranspiration (ETp) was prediced by maize simulation model (MSM). Then, it was evaluated and validated using experimental field data obtained in Agricultural Research Station of Shiraz University (Bajghah, Fars province) during 2003 and 2004. Comparison of measured volumetric soil water content with predicted values by MSM model in 2003 and 2004 indicated that this subroutine (prediction of maize evapotranspiration) did not need modification. Also, daily potential evapotranspiration of maize was estimated by using Penman-Monteith equation considering single and dual crop coefficients. Comparison between the results of predicted ETp by MSM model, calculated ETp by Penman-Monteith, and measured irrigation water and soil water content indicated that the prediction of ETp by MSM model was satisfactory. Model prediction of seasonal ETp, potential transpiration (Tp) and soil evaporation (E) were 831, 536 and 329 mm, respectively, in 2003, and 832, 518 and 314 mm, respectively, in 2004. The values of ETp, Tp and E calculated by Penman-Monteith method using dual crop coefficients were 693, 489 and 205 mm, respectively, in 2003, and 700, 487 and 213, respectively in 2004. Maximum rate of predicted potential ETp, Tp and E were 11.1, 8.2 and 5.1 mm d-1, respectively in 2003 and 13.0, 9.0 and 4.0 mm d-1, respectively in 2004. The values of calculated seasonal ETp by Penman-Monteith method using single crop coefficient were 615 and 632 mm in 2003, and 2004, respectively. Comparison between the results of predicted ETp by MSM model, calculated ETp by Penman-Monteith equation with single and dual crop coefficients (FAO-56) and measured values of irrigation water and soil water contents of root depth indicated that FAO-56 methods underestimated the ETp.
F Parsa, R Azadi Gonbad, A Moghadam Dorodkhani,
Volume 12, Issue 46 (fall 2009)
Abstract

Every year lots of waste will produce in factories from black tea. These waste will remain unusable or through away but only little amount will be used in industry. In this survey, important components of tea dust and three kinds common tea wastes was studied from 1382 to 1383. Four compounds (caffeine, protein, fiber and fluor) were extracted and measured separately from four samples of wastes (dust, fluff, footstalk and stalk) as experimental component. In three periods of plucking (spring, summery and autumn) from two kinds of arrangement (from curve and flat bushes). The experiment were conducted in four experimental components with replications and were analyzed with Duncan method. The results indicated that effects all of wastes, plucking periods and two kinds of arrangement (except effect of that on amount of caffeine) were significant on caffeine, protein, fiber and fluor whereas maximum amounts of caffeine, fluor and protein in dust but maximum amounts of fiber was in stalk and Effect of plucking period indicated maximum amount of fluor and caffeine in summer plucking and maximum amount of fiber and protein in autumn plucking and effect of plots indicated maximum amount of fiber in flat plot and maximum amount of fluor and protein in curve plot.
M Lotfalian, B Majnonian, M Rezvanfar, A Parsakho,
Volume 12, Issue 46 (fall 2009)
Abstract

In this research, the logging and wood extraction damages caused by wood and paper companies was investigated. The average volume per hectare of compartments 17 and 28 of Waston watershed and Compartment 7 of Alandan watershed was more than 150 cubic meters. So, these compartments were selected as the suitable research sites. The systematic randomized sampling method with 1000 m2 circular plots was used to assess the damages to residual stands and 100 m2 circular plots was used to assess the damages to regeneration. Sampling in skid trail was done with one hundred percent inventory method with a width of 12 meter. Results of this study indicated that 3.2 percent of regeneration was damaged in felling and bucking operations and 4.8 percent of regeneration was also damaged after winching and skidding operations. Most of these damages occurred for thicket stage. The felling and bucking operations damaged 13.6 percent of the residual stand. The amount of damage to the stand after skidding including the whole logging damages equals 15.5 percent. Unnecessary damages to stand and regeneration could have been avoided by selecting the best harvesting method, skidding practices, adequate incentives/disincentives and appropriate supervision.
A Majnoni-Heris, Sh Zand-Parsa, A Sepaskhah, M.j Nazemosadat,
Volume 12, Issue 46 (1-2009)
Abstract

Global solar radiation (Rs) has wide applications in several disciplines. The data of measured or predicted Rs are widely applied by solar engineers, architects, agriculturists and hydrologists. Due to the importance of Rs, several empirical models have been developed to predict its values all over the world. In this study, Angstrom model was calibrated based on the ratio of actual and possible sunshine hours n/N by using measured daily data of Rs at Bajghah meteorological station in Fars province during 2003-2004. The model was modified by using air temperature for considering the effect of cloudy conditions as well as n/N ratios. The results showed that using both the air temperatures and the ratios of n/N led to a higher accuracy. In regard to estimation of the Rs values, the results showed that mean air temperatures have a higher accuracy compared with differences between maximum and minimum air temperatures. Also, a new local model with higher accuracy was developed based on a number of daily meteorological parameters such as deficit vapor pressure, relative humidity, precipitation, mean air temperature, maximum and minimum air temperatures difference and n/N. This new local model that used different meteorological parameters had the highest accuracy in comparison with the other models. Also, a number of models developed by other investigators for estimation of Rs were calibrated for the study area. Finally, different selected models were validated by using the measured data of Rs in 2005. The results showed that the developed local multi-variable model provided higher accuracy results in comparison with the other radiation models.
A Nehzati Pghaleh, Sh Zandparsa, A.r Sepaskhah,
Volume 12, Issue 46 (1-2009)
Abstract

Water and fertilizer applications management should be improved due to scarce resources and environmental protection aspects. An analysis of crop yield production and profit maximization was conducted to determine the optimal water and nitrogen allocation. In this study, maize grain yields were predicted for 25 different amounts of irrigation water (350-1700 mm) and 46 different rates of nitrogen application (0-450 kg N/ha) were predicted using MSM (Maize Simulation Model) model. Irrigation water was distributed in growth period based on maize evapotranspiration. 30% and 70% nitrogen fertilization was used 19 and 50 days after planting date, respectively. Based on field operational costs and present market value in Fars province, optimal amounts of applied water and nitrogen were determined in different conditions of maximum yield (Wm and Nm, respectively), maximum profit under limited land (WL and NL, respectively) and maximum profit under limited water (Ww and Nw, respectively). At present market value ( 88 Rls m-3 for water, 1946 Rls kg-1 for nitrogen and 1570 Rls kg-1 for maize grain), the amounts of Wm, WL and Ww were 1336, 1008, 844 mm, respectively, and the amounts of Nm, NL and Nw were 450 kg N ha-1. Because of the low price of nitrogen, the optimum amounts of nitrogen in the analyzed conditions were similar. If the price of nitrogen and water are increased (i.e. 30000 Rls kg-1 N and 1000 Rls m-3 water), the optimum amounts of applied nitrogen and water in the analyzed conditions are changed to 450, 120 and 210 kg N ha-1, and 1336, 899 and 874 mm, respectively.
A Parsakho, S.a Hosseini, M Lotfalian, H Jalilvand,
Volume 13, Issue 47 (4-2009)
Abstract

Forest roads must be constructed according to technical standards and guidelines which have been published by the scientific and operational organizations. Recently, hydraulic excavators have been used beside the bulldozer for excavating the forest roads. Thus, it is necessary that their ability in construct of standard cross sections be compared. This study was conducted in Lattalar forest which is located south of Sari city (Mazandaran Province). 60 cross section samples were randomly selected for each machine in slope classes of 30-40, 40-50, 50-60 and 60-70%. Then, cross sections were taken by niveau and clinometer. The results in different slope classes showed that the hydraulic excavator and bulldozer had no significant effect on cut and fill slopes length and gradient. Roadbed width in bulldozer construction area was more than the hydraulic excavator at probability level of 1%. Also, there was a significant difference between the hydraulic excavator and bulldozer earthworking width in slope classes of 30-40 and 40-50% at probability level of 5 and 1%, respectively, whereas this difference was not significant in other slope classes. Finally, the average standard cross sections for hydraulic excavator and bulldozer were 89.96 and 84.81%, respectively.
Z. Khosravani, S. J. Khajeddin, A. Soffianian, M. Mohebbi, A. H. Parsamehr,
Volume 16, Issue 59 (spring 2012)
Abstract

LISS IV sensor's data from IRS-P6 satellite was used to produce land use map of eastern region of Isfahan, the studied part of which has an area of 22121 hectares. Its three band data, namely band 2 (Green), band 3 (Red) and band 4 (Near infra red) of LISS-IV sensor images with 5.8 m ground resolution were georeferenced by nearest neighbor method and first-order polynomial model to the DEM map of 1:25000, where the RMSE was equal to 0.3 pixel. To analyze the satellite data, various image processing methods such as supervised and unsupervised classification methods, principal component analysis, NDVI vegetation index and filtering were applied to the satellite data. Finally, the land use map was produced with hybrid method. The final map detected 6 land uses very clearly, which are: Agricultural lands, barren lands, disturbed lands, cultivated Haloxylon amodendron, roads, residential areas and industrial locations. The kappa of land use map is 0.89 and the overall precision is 0.92. The barren lands have a very poor natural vegetation and are considered as natural deserts. Disturbed lands have been formed because of brick kiln activities, and the vegetation cover of these areas has disappeared completely The LISS IV data has a high ability to detect the various studied land-uses especially to digitize the roads. They can be used to update the 1:25000 topographic maps, as well.
S. Marofi, N. Parsafar, Gh. Rahimi, F. Dashti,
Volume 16, Issue 61 (fall 2012)
Abstract

In this study, a completely randomized experiment was designed with four irrigation treatments and three replicates. The irrigation programs were raw wastewater, treated wastewater, a combination of 50% raw wastewater and 50% potable water and a combination of 50% treated wastewater and 50% potable water. The experiments were run within a greenhouse. The lysimeters were built up on September 2009 and they were filled with two layers of soil. The upper (0-30 cm in depth) and lower (30-70 cm in depth) layers were sandy loam and sandy clay loam, respectively. A total of eight watering programs with an interval of elevens-day were applied. After each irrigation program, intake wastewater and drainage water of each Lysimeter was sampled in order to analyse the transport of heavy metals (Cu, Zn, Fe and Mn, Ni, Cd and Pb). Results showed that the effect of water quality was significant on percentage of transport of heavy metals. The lowest transport percentage of heavy metals belonged to raw wastewater treatment. Also, the highest percentage of transport of Cu, Zn, Fe, Ni and Pb belonged to the combination of 50% raw wastewater and 50% potable water. In most cases, we observed that the transport percentage of these elements increased by continuing the irrigation
N. Parsafar , S. Marofi,
Volume 16, Issue 62 (Winte - 2013 2013)
Abstract

In this research, we estimated soil shallow depths temperatures using regression methods (Linear and Polynomial). The soil temperatures at soil depths (5, 10, 20, 30, 50 and 100 cm) were correlated with meteorological parameters. For this purpose, temperature data of Hamedan station (in the period 1992-2005) were employed. Soil temperature data were measured on a daily basis at 3 PM, 9 PM and 3 AM. MS Excel was used for deriving the regressions between soil temperature and meteorological parameters (air temperature, relative humidity and sunshine hours). The results showed that the highest coefficient of determination (R2) of the linear regression was between soil temperature in 20 cm soil depth and air temperature at 3 AM (R2= 98.15%) and the lowest value in 100 cm soil depth at 3PM (R2= 83.96%). Also, the highest R2 of non-linear regression was observed between soil temperature in 10 cm soil depth and air temperature at 3 AM (R2= 98.45%) and lowest value in 100 cm soil depth at 3PM (R2= 84.11%). The results showed that the highest and lowest values of R2 of linear relations between meteorological parameters (relative humidity and sunshine hours) and soil temperature were observed in 10 cm soil depth (at 3 AM) and in 100 cm soil depth, respectively. Correlations of soil temperature with air temperature were greater than those with the other two parameters. Moreover, R2 values of non- linear relation were higher than linear relation.
N. Parsafar, S. Marofi ,
Volume 17, Issue 66 (winter 2014)
Abstract

In this study, a completely randomized experiment was designed with five irrigation treatments and three replicates. The irrigation programs were raw wastewater (T1), treated wastewater (T2), a combination of 50% raw wastewater and 50% fresh water (T3), a combination of 50% treated wastewater and 50% fresh water (T4), and fresh water (T5). The experiments were run within a greenhouse. The lysimeters were built up in September 2009 and they were filled with a two layer soil. The upper (30 cm) and lower (40 cm) layers were sandy loam and sandy clay loam, respectively. The results showed that the effects of watering treatments on transfer coefficients of heavy metals from soil to shoots (except Cd) and tubers of potato (except Zn and Cu) were significant (p <0.01). Maximum and minimum transfer coefficients of heavy metals were observed in the (T1) and (T5) treatments, respectively. Also, the transfer coefficients of Cd from soil to shoots were lower than tubers. In the case of Zn, Cu and Pb, transfer coefficients from soil to tubers were lower than shoots. In this study, the maximum transfer coefficients to shoots were Cd (0.331-0.463), Zn (0.383-0.230), Cu (0.173-0.386) and Pb (0.003-0.057), respectively. Maximum transfer coefficients toward tubers (except T5) were Cd (0.439-0.572), Cu (0.081-0.138), Zn (0.170-0.217) and Pb (0-0.017), respectively. The combination of wastewater and fresh water use in short-term irrigation might be feasible, but a heavy metal monitoring program is necessary.
N. Parsamanesh, M. Zarrinkafsh, S. S. Shahoei, Weria Wisany,
Volume 18, Issue 70 (winter 2015)
Abstract

Reduction of quality and soil productivity due to organic carbon losses is one of the most important consequences of land use changes, that creates irreparable effects on the soil. To evaluate the land use effect on the amount of soil organic carbon in Vertisols, Sartip Abad series with extent of 1850 hectare in south of Bilehvar area in Kermanshah province was studied by using the completely randomized block design in factorial experiment with 10 repeats in farmland and grassland, some soil physical and chemical properties in two Lands compared with each other. The results showed that the soil organic carbon in surface horizons of grassland has been more than farmland and accordingly increase the amount of sequestrated carbon in grassland. No significant differences were found in the amount of soil organic carbon in lower horizons of two lands. Due to land use change from grassland to farmland, noticeably increase in Bulk density, Nitrogen, Acidity, soil Electrical Conductivity and decrease the organic carbon percent and the soil organic material. Pedutorbation, clay amount (higher of 50%), numerous small subsoil, and stable structure are the important factors in saving the organic carbon of vertisols that can reduce the effects of land use changes on organic carbon amount. Generally, it can be conclude that: the land use changes not only can create the severe damage on soil physical and chemical properties but with the carbon losses and more release of greenhouse gases exacerbate the pollution of environment which endangers the life in a earth planet.


S. A. Banimahd, D. Khalili, A. A. Kamgar-Haghighi, Sh. Zand-Parsa,
Volume 18, Issue 70 (winter 2015)
Abstract

In the present research, the performances of six empirical models, i.e., simple threshold exceedance, fixed proportion exceedance, quadratic function of storage, power function of storage, cubic function of storage, and exponential function of storage were investigated for estimation of groundwater potential recharge in a semi-arid region. First, the FAO Dual Crop procedure was used to calibrate evaporation from bare soil during the occurrence of potential recharge period. Then, the empirical models were calibrated utilizing soil moisture and potential recharge data. For validation of empirical models, soil moisture and potential recharge were simultaneously estimated for an independent event. Results indicated that 5 of the six models (except for the simple threshold exceedance model) were able to estimate potential recharge with a reasonable accuracy, showing the maximum computed value of NRMSE (Normalized Root Mean Square Errors) of 24.4 percent. According to validation results, exponential, cubic, and power function models provided better estimation of potential recharge in comparison with the linear models. Also, all of the applied empirical models were able to simulate soil moisture during the recharge period with an acceptable accuracy. Finally, the exponential model with minimum NRMSE value for soil water simulation and also acceptable performance of potential recharge estimation was recommended for estimation of potential recharge in the study area.


F. Parsadoust, Z. Eskandari, B. Bahreyninejad, A. Jafari Addakani,
Volume 19, Issue 71 (spring 2015)
Abstract

Evaluation of chemical and biological indicators of soil in different land uses could be helpful in sustainable range management, preventing degradation of soil quality trend. This study was conducted in Friedan in Isfahan province in 2010 to compare chemical and biological indicators in three land uses (rangeland, degraded dry land and dry land), during two growing seasons (May and September) in three slopes (0-10, 10-20, 20-30 %). Nitrogen, phosphorus, potassium, organic matter, cation exchange capacity and microbial soil respiration were measured. Results showed that all measured characteristics except potassium decreased over an increase in the slope. Maximum values of phosphorus, organic matters, cation exchange capacity and soil respiration were obtained in pasture (28.4 mg/kg, 0.62%, 20.38 cmol/kg, 33.2 mgC/day, respectively)but potassium maximum rate was seen in dry land form (406.8 mg/kg).The effect of season on all measured parameters was significant except for N, while the highest amounts of phosphorus, potassium, cation exchange capacity and soil respiration (28.7 mg/kg, 377.3 mg/kg, 19.6 cmol/kg and 25.9 mgC/day, respectively) were seen in May and the highest organic matter rate (0.68%)in September. The results of this study showed that an increase in the slope, poor range management, and the end of the growing season could be major factors degrading the soil quality indices and soil productivity.


Z. Khosravani, S. J. Khajeddin, M. Mohebbi, A. R. Soffianian, A. H. Parsamehr,
Volume 19, Issue 72 (summer 2015)
Abstract

Segzi, located in the east of Isfahan, is one of the most important centers of desertification crisis in Isfahan province. Human overtaking, land deformation and the presence of huge artificial topography in flat plain has created a very unpleasant landscape in the area. In this study, satellite images Cartosat-1 were used for mapping land degradation. By using DGPS, 9 points with appropriate distributions related to road junctions were selected. These points after Interior and exterior orientation determined as control points in Cartosat-1 pair images. To improve compliance, process of points development and production of 31 tie points was done. These points was coordinated in triangulation process and introduced as check points. Desirable RMSe, 0.3 pixel is obtained. Then DEM based on 40 points was prepared with 15×15m pixel size. The DEM, in GIS software was classified to 9 elavation classes by Natural Breaks method. The file of classified raster DEM convert to vector andcut and fill appeared as polygon that by encoding them, excavation map is produced in GIS with Kappa 0.95 and 0.97 overall accuracy. The Results of this study show that Cartosat-1 satellite images have ability for study of degraded lands and anthropogenic holes. The topographic changes caused the loss of natural vegetation and desertification in this area has developed.


M. Amouzegar, A. Abbaspour, Sh. Shahsavani, H. R. Asghari , M. Parsaeiyan,
Volume 19, Issue 74 (Winter 2016)
Abstract

Soil contamination by Pb leads to a reduction in the quality and quantity of crop yield, because it is highly toxic in soluble ionic forms. The availability of this element for plant roots can reduce by the formation of compounds with low solubility and their sedimentation by phosphorous amendments.. Root symbiosis with mycorrhizal fungi can also increase plant resistance against heavy metals. This study was carried out as a factorial experiment in a randomized complete block design asa greenhouse experiment on sunflower plant at Shahrood University. Treatments included mycorrhizal fungi with two levels of inoculation, (with and without inoculation), organic and inorganic phosphorous fertilizers such as humic acid, diammonium phosphate, bone meal and bone meal+humic acid. The results showed that inoculation with mycorrhizal fungi resulted in a significant increase (P&ge0.05) in percentage of mycorrhizal colonization and an increase in soil EC,shootdry weight and phosphous uptake by the plant. Phosphorus fertilizers significantly increased the available phosphorus in soil, dry weight and uptake of phosphorus by the shoots. The interaction effects of mycorrhiza and phosphorus fertilizers on soil exchange able Pbwere significant. The application of diammonium phosphate and mycorrhiza had the greatest impacton the reduction of Pb (by 25.48percent) in the soil exchange. Mycorrhizal plants had a lower rate of lead concentrations in shoots, which was equal to 78/14%, and also the application of phosphorus fertilizers significantly reduced Pb in plant shoots.


Sh. Zand-Parsa, S. Parvizi, A. R. Sepaskhah, M. Mahbod,
Volume 20, Issue 77 (Fall 2016)
Abstract

In agricultural development many factors such as weather conditions, soil, fertilizer, irrigation timing and amount are involved that are necessary to be considered by the plant growth simulation models. Therefore, in this study, the values of soil water content at different depths of soil profile, dry matter production and grain yield of winter wheat were simulated using AquaCrop and WSM models. The irrigation treatments were rain-fed, 0/5, 0/8, 1 and 1/2 times of full irrigation conducted in Agricultral College of Shiraz University during 2009-2010 and 2010-2011. The models were calibrated using measured data in the first year of experiment and validated by the second year data. The accuracy of soil water simulation was used to refer to the accuracy of simulated evapotranspiration. The accuracy of soil water content at different layers of root depth in the validation period was good for the WSM model (Normalized Root Mean Squer Error, NRMSE= 0/14). But the AquaCrop model showed less accuracy for soil water content (NRMSE=0/26). However, the values of predicted and measured crop evapotranspiration were close together at full irrigation treatment, the accuracy of AquaCop predictions was decreased with inceasing water stress. WSM model has had a good estimation of the dry matter and grain yield simulation with NRMSE of 0/15 and 0/18, respectively. However, they were simulated with less accuracy in the AquaCrop model with NRMSE of 0/19 and 0/39.



Page 1 from 2    
First
Previous
1
 

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb