Search published articles


Showing 14 results for Samadi

Sayed-Farhad Mousavi, Ahmad Mohammad-Zadeh, Ahmad Jalalian, Hossein Samadi-Boroujeni,
Volume 1, Issue 2 (fall 1997)
Abstract

One of the most vital problems in the storage and utilization of surface waters for drinking, flood control, hydropower, and agricultural purposes is that of sedimentation in reservoirs and subsequent decline of dam lifetime. The useful lifetime of a dam is defined as the time necessary for approximately 80% of the volume of its initial capacity to be filled by sediments washed in by water. It is a function of the volume of the incoming sediments, specific weight of sediments, and reservoir trap efficiency. Trap efficiency depends on sediment characteristics, life, shape, and rule curves of the reservoir as well as on the capacity-inflow ratio. It is the purpose of the present study to calculate sediment trap efficiency of small dams and also to determine the relationship(s) among the effective parameters in the Chaharmahal and Bakhtiary region. For our purposes, 14 small earth dams (with heights of less than 15 m and capacities of about 1 MCM) were selected around Shahrekord and Borougen. Since no data were available on the erosion and sedimentation for these dams, the MPSIAC empirical model was used to estimate the incoming sediment to the dams' reservoirs. The model considers nine factors effective on erosion and sediment production in each watershed. These factors were analyzed for the watershed of each dam under study and the annual sediment yield was calculated. The amount of sediments retained in the reservoirs as a result of the working life of the dams was estimated by reservoir surveying. The trap efficiency was calculated for all the reservoirs under study. The results obtained revealed that the trap efficiencies for these small dams ranged from 10.4 to 68.9%. New curves were developed and suggested for the trap efficiency of small dams based on these results.
A. Rezaizad, B. Yazdi Samadi, M.r. Ahmadi, H. Zeinali,
Volume 5, Issue 3 (fall 2001)
Abstract

To determine the relationships between yield and its components, and to find the direct and indirect effects of yield-related traits on soybean yield, 240 genotypes were grown in the Research Station, College of Agriculture, Karaj, Iran, in 1997-98 using an augmented design. The study of correlation analysis showed that number of seeds per plant and seed yield per plant had the highest significant correlation coefficient (r=0.92). Other significant correlation coefficients were found between biomass per plant and yield (r=0.86) and between number of pods per plant and yield (r=0.67). Results of stepwise regression analysis revealed that number of seeds per plant, seed weight, and number of seeds per pod were the three major traits affecting seed yield in soybean. However, path analysis showed that only two of the three above-mentioned traits, namely, number of seeds per plant and seed weight, are quite important for soybean selection programs. Stepwise regression analysis was used again, omitting number of seeds per plant, which showed that number of pods per plant, seed weight, plant height and number of days to 90% maturity, are important contributors to yield. Path analysis, this time, revealed that the correlation effects to plant height and number of days to 90% maturity on yield is due to the indirect effects exerted through other traits. It is concluded that three traits, namely, number of seeds per plant, seed weight and number of pods per plant have notable effects on soybean seed yield.
A. Mirzai- Asl, B. Yazdi- Samadi Et.al.,
Volume 6, Issue 1 (spring 2002)
Abstract

To evaluate cold resistance in wheat in laboratory and to find fast and effective methods of evaluation, nine wheat genotypes were studied in three experiments at the College of Agriculture, University of Tehran, Karaj, Iran. Genotypes consisted of four Iranian cultivars, Sabalan, Boulani, Khalij and Naz one Russian cultivar, Bezostaya and four Iranian accessions, 518, 583, 592 and 1255. In experiment 1, genotypes were grown in 10-cm diameter pots and after hardening in the open, their LT50s were determined in cold chamber. Their cytoplasmic membrane stability were also measured at -12°C through electrolyte leakage measurements. In experiment 2, the genotypes were grown in the field to practice hardening in winter then plant crowns were transferred to the lab and their LT50s were determined. Water content of crowns and leaves, sugar content of crowns, and plant erectness were also measured. In experiment 3, water content of crowns and leaves of the genotypes were measured in non-hardened plants.

Cytoplasmic membrane stability, crown water content and crown sugar content of plants showed significant correlations with LT50. Membrance stability had the highest correlation with LT50 (r=0.88). A high correlation was found between crown LT50 of plants taken from field and LT50 from the plants in the lab (r=0.98). It was found that plant water content reduces with cold hardening. Water content reduction was higher in resistant genotypes compared to susceptible ones. There was no significant correlation between crown and leaf water contents with LT50 in non-hardened plants. Bezostaya with LT50=-16.7°C was the most cold resistant genotype and accession 518 with LT50=-8.2°C was the most susceptible genotype, in this study.


Sh. Mahmood-Soltani, A. Samadi,
Volume 7, Issue 3 (fall 2003)
Abstract

Knowledge of forms of phosphorus (P) is important in the evaluation of soil P status and also in understanding soil genesis and fertility. Amounts and distribution of P in different organic and inorganic fractions were examined in 39 soil samples of Fars province. Soils were sequentially extracted to determine organic P and inorganic P fractions. Total P with an average of 597 mg/kg soil was lower in the light soils (482 mg/kg) as compared with the heavy soils (690 mg/kg). Organic P constituted considerable portions of TP (27%). Calcium phosphates with an average of 424 mg/kg soil and being comprised of 71% inorganic P was the dominant form of soil phosphorus. Simple regression analysis indicated that there were significant positive relationships between organic P, Ca phosphates and Al-Fe phosphate values with CEC and clay content. Stepwise multiple regression analysis showed that a combination of soil properties such as clay content and equivalent calcium carbonate (CCE) increased correlation coefficients (R). Alghough multiple regression model was significant (at P<0.05), the relative contribution of each soil property in Al-Fe-P fraction was not considerable.
P. Norouzi, D. Cai, M. A. Malboobi, B. Yazdi Samadi,
Volume 7, Issue 3 (fall 2003)
Abstract

OF2 and VAP genes, probably involved in signal transduction of sugarbeet nematode resistance, have already been cloned in bacterial vector by AFLP molecular marker and a two-hybrid system, respectively. To examine their capability to introduce resistance in sugarbeet, the genes were transferred to plant expression vectors. For this reason, OF2 gene after isolation was inserted within T-DNA of pAM194 binary vector, downstream of CaMV35S constitutive promoter and also inserted within T-DNA of modified pBin121 binary vector, downstream of HS1pro-1 gene inducing promoter (responsible for nematode resistance). VAP gene after isolation was inserted within T-DNA of pAM194 plasmid, downstream of CaMV35S constitutive promoter. Thus, three new constructs were made in which genes of signal transduction pathway were expressed to give beet cyst nematode resistance. These plasmids were separately transferred to Agrobacterium rhizogenes, strain AR15834. In the next step, petiole explants of sugarbeet were inoculated with the bacterial cells. Transformation-derived hairy roots were analyzed by GUS staining and/or PCR and were then inoculated with nematode larvae. Primary results showed partial resistance against nematode larvae in some hairy roots. As a result, this resistance can be related to OF2 and VAP genes effect.
J. Ahmadi, S.f.orang, A.a. Zali, B. Yazdi – Samadi, M. R. Ghannadha, A. R. Taleei,
Volume 11, Issue 1 (spring 2007)
Abstract

Generation mean analysis (GMA) was used to study the type of gene action and inheritance of grain yield and its components. Generation mean analysis with joint scaling test was performed. This research was conducted at research farm of college of Agriculture at the University of Tehran. The parents and their progenies ( F1, F2, BC1 & BC2) in three mating groups ( Sardari × 7007, Sardari × 7107& 7107 × 5593) were produced and planted using a randomized complete block design with four replications for each mating group. Of four replications in each experiment, two replications for drought and two replications for non-drought condition were used. The eight traits which were evaluated included grain yield, plant height, plant weight, tiller number, spike length, grains per spikes and 100 grain weight. Most of the genetic parameters including mean (m), additive (d), dominant (h), additive × additive [i], additive × dominant [j], and dominant × dominant[l] effects were significant. However, all gene effects were not significant in all traits.The dominant gene effect was the most contributor factor to inheritance of the majority of traits. For the majority of the traits, additive gene effect was significant, but its magnitude was less than dominant gene effect. Also the dominant × dominant[l] epistasis was more important than additive× additive [i] epistasis. The degree of dominance in most of traits indicated the predominance of dominant gene effects.
H. Samadi-Boroujeni, M. Shafaei-Bajestan, M. Fathi Moghadam,
Volume 11, Issue 40 (summer 2007)
Abstract

Sedimentation and consolidation of cohesive sediments near the dam body can cause many problems such as clogging the bottom outlets and entering the sediments into the hydropower intakes. Flushing of these sediments through the bottom outlet will be successful only if the hydraulic conditions are designed according to the physical and mechanical properties of consolidated sediments. During the past decades many researches have been conducted on the distribution of non cohesive sediments in the reservoir, yet little information is available for cohesive sediments. Therefore the main purpose of this study is to conduct a physical model study to investigate the process of sedimentation and consolidation of cohesive sediments in the dam reservoir. The experimental tests were conducted in a settling column test with a height of 3.8 m and diameter of 0.3m. The sediment samples were collected from the Dez dam reservoir since it is predicted that in less than 5 years the sediment will reach to such an elevation that can enter into the hydropower intakes. The obtained results show that there is a an algorithmic relationship between the time and changing of the sediment concentration during the sedimentation and self-weight consolidation processes. This process can be divided into four separate phases. It is also of note that in this paper the effective stress-void ratio and coefficient of permeability – void ratio relationship were obtained as a power relationship, which are in agreement with the results obtained by other investigators. These relationships can be used as primary data in the mathematical model of sedimentation and consolidation.
B Dolati, Sh Oustan, A Samadi,
Volume 12, Issue 46 (1-2009)
Abstract

Successive cropping of potassium-demanding crops like sunflower leads to depletion of soil potassium (K). This study was conducted to investigate the different forms of K and quantity–intensity (Q/I) relationship for sunflower growing soils in Khoy region, West Azarbaijan province. Twenty composite soil samples were collected from different soil series. Different forms of K, including solution K (Kso), exchangeable K (Kex) and non-exchangeable K (Knex) were determined. The results showed that Kso values varied from 0.061 to 0.54 (mmol L-1), with an average of 0.28 (mmol L-1), Kav values ranged from 55 to 699 (mg kg-1), 265 mg Kg-1 on average, and Kex values ranged from 54 to 694 (mg Kg-1) with an average of 261 (mg kg-1). Furthermore, Knex values varied from 160 to 612 (mg kg-1), 261 (mg kg-1) on average. Available K (NH4OAc- extraction) was less than 250 mg Kg-1 in half of the soils indicating the depletion of potassium from these soils. The Q/I curves were predominantly located in the adsorption regions. The Q/I curves were linear and lacked the curvature part relating to loss and gain of potassium present in the specific sites. The PBCK values varied from 11 to 108 (cmolc kg-1)/ (mol L-1) 0.5 and an average of 38 (cmolc kg-1)/(mol L-1)0.5. There was a linear significant relationship between PBCK and CEC (r2=0.82***). The AReK values ranged from 0.0014 to 0.027 (mol L-1) 0.5 and 0.0076 (mol L-1)0.5 on average. There was a significant relationship between the values of AReK and those of the soil solution K (r=0.68**). The Ko values varied from 0.0050 to 0.49 cmolc kg-1and an average of 0.21cmolc kg-1. Additionally, there was a high significant relationship between the values of Ko and ARoK (r= 0.95***) in the soils under study.
A.h Hosseinzadeh, I Bernousi, M Mardi, M Bihamta, S Omidi, B Yazdi Samadi,
Volume 13, Issue 47 (4-2009)
Abstract

Fusarium head blight (FHB) is one of the most destructive diseases of wheat causing significant reduction in grain yield and quality. Development of resistant varieties is an effective, economical and enviromentally safe way to control FHB disease. A major QTL (quantitative trait locus) for Fusarium head blight resistance, Qfhs.ndsu-3BS, derived from cv. Sumai 3, has been identified and verified by several research groups via molecular marker analysis. The resistant cv. Sumai 3 was crossed to susceptible cv. Falat, then three backcrosses were followed by one self-fertilization. Three simple sequence repeat (SSR) markers, Xgwm 389, Xgwm493, Xgwm533, were used for marker assisted selection (MAS) in BC1 and BC2 generations.The probability of linkage between markers and Qfhs.ndsu-3BS was calculated using a binomial probability function based on the assumption that a molecular marker at a specific distance from Qfhs.ndsu-3BS in the population would carry the donor-parent allel as a function of the distance between marker and QTL and the number of backcrosses/selfs used in deriving the population. Microsatelite locus Xgwm 493 was significantly associated with Qfhs.ndsu-3BS.
N. Miran , A. Samadi,
Volume 16, Issue 61 (fall 2012)
Abstract

To establish DRIS norms in sugar beet (Beta Vulgaris L.) and compare them with DOP index, leaf samples were collected from 57 fields and N, P, K, Ca, Mg, Fe, Mn, Zn, Cu and B concentrations were determined. On the bases of crop yield, the fields were divided into two groups with low and high yielding performances. Standard DRIS norms were established for the different nutrient ratios. DRIS indices were calculated to evaluate nutrient balances and order of nutrients requirements. Sufficiency ranges of macro and micro nutrients were derived by DRIS technique. DRIS-derived sufficiency ranges were 3.0-5.4, 0.21-0.47, 1.7-3.7, 0.55-1.6, 0.19-0.34% for N, P, K, Ca, Mg, and 24-168, 10-19, 42-138, 10-14, 9-20 mg/kg for Fe, Zn, Mn, Cu, B, respectively. DRIS indices showed that among macro and micro nutrients in all low yielding fields, Phosphorus and copper had the most negative index values, respectively. The nutritional balance index (NBI) of DRIS and of DOP (∑DOP) were much more than zero in all low-yielding fields, indicating that there was imbalance between the absorbed nutrients by sugar beet. Comparison of the DRIS method with the DOP showed that both methods provide similar information in the interpretation of the results of leaf analysis.
A. Samadi, E. Sepehr,
Volume 17, Issue 65 (fall 2013)
Abstract

In order to determine optimum equilibrium solution phosphorus (P) concentration using P adsorption isotherm and obtain model(s) by integrating soil solution P concentration, physicochemical properties, and soil P test (available P) which predict standard P requirements to achieve maximum yield, laboratory and glasshouse experiments were conducted on 36 soil samples belonging to 15 soil series and 14 soil samples, respectively. Using wheat as a test crop, the glasshouse experiment was laid out with five P levels in a completely randomized design with three replications. Concentrations of P in solution established by adding P in the pots estimated from the sorption curve ranged from 0.2 to 1.2 mg P/L including check treatment (no P). The results showed that equilibrium solution P concentration (EPC) was almost low in comparison with the requirement for most crops (<0.2 mg/L). The amount of P adsorbed by the soils at 0.2 mg/L EPC ranged from 5 to 114 mg/kg soil. The phosphate adsorption was well described by Freundlich (R2 = 0.96) and Langmuir (R2 = 0.88) isotherms. Langmuir maximum adsorption (Xm) and Freundlich coefficient (aF) estimated from Langmuir and Freundlich equations ranged from 127 to 238 mg P /kg soil and from 43 to 211 mg P/kg, respectively. Yield of wheat in all soils approached maximum as adjusted P levels were increased to 0.4 mg P/L. The results showed that some soils studied were adequate in available P by the NaHCO3 test, but required an amount of P fertilizer by the isotherm P requirement test to obtain maximum biomass production. Soil clay content was significantly related to the soil P sorption indices, P0.4 (P sorbed at 0.4 mg P/L EPC) (R = 0.40, P<0.01), PBC (P buffering capacity) (R = 0.54, P<0.001), aF (R = 0.48, P<0.01), and Xm (R = 0.40, P<0.01). Total CaCO3 and Active CaCO3 were found to be less important factors affecting P adsorption. Using stepwise regression analysis resulted in a useful regression model including the combination of Olsen P and clay content for the prediction of standard P requirement (P0.4).
M. Khastar-Borujeni, H. Samadi, K. Esmaili,
Volume 18, Issue 68 (summer 2014)
Abstract

Due to adhesion properties of fine sediments, chemical physics factors of fluid can cause changes in the behavior of sediments. In this study, the characteristics of sediment deposition with three levels of waste water, different shear stresses and initial sediment concentrations were investigated in the annular flume located at Hydraulic Laboratory of Shahrekord University. Sediments for experiments were taken from the Pirbalut dam reservoir. The velocity and the shear stress profiles were measured using an Acoustic Doppler Velocimeter (ADV).The results showed that the concentration of cohesive sediment was decreased with time and finally it reached an equilibrium concentration of sediment. The equilibrium concentrations to initial concentration (Ceq/C0) in special shear stress, for different initial sediment concentrations and different levels of waste water were almost the same. Equilibrium concentration was dependent on the initial concentration sediment. Threshold and full deposition shear stresses were increased in waste water. Shear stresses of full deposition for 0, 30 and 60 % wastewater were 0.053, 0.075 and 0.070 N/m2, respectively. Also, for specified levels of waste water, the values

 were obtained 10, 15 and 17, in which the suspended sediments would remain.

G.m. Samadi, F. Mousavi, H. Karami,
Volume 26, Issue 3 (Fall 2022)
Abstract

The impact of different management options on the region and the existing conditions can be evaluated with minimal cost and time to select the most practical case using various tools including mathematical models. In this study, the SWAT hydrological model was performed from 2009 to 2019 using climatic, hydrological, and hydrometric data in the Malayer catchment, and the final model was validated by SWAT-CUP. To reduce the amount of uncertainty in the input parameters to the MODFLOW model, using the values of surface recharge from the implementation of the SWAT hydrological model, quantitative modeling of Malayer aquifer was performed more reliably in GMS software by using MODFLOW model. After modeling the study area in the 2009-2018 period and calibrating the model in the years from 2018 to 2019, the mean values of absolute error (MAE) were 0.35-0.65 m, and root means square error (RMSE) was 0.62-0.94 m, which seems acceptable considering computational and observational heads equal to 1650 m. Results of water level changes in observation wells located in the Malayer region indicate that the groundwater level in the aquifer has decreased by an average value of 9.7 m in the 10-year study period.

R. Samadi, Y. Dinpashoh, A. Fakheri-Fard,
Volume 27, Issue 3 (Fall 2023)
Abstract

A hydrological parameter affecting the management of water resource systems is changes in the amount and occurrence time of extreme precipitation (OTEP). In this research, the seasonality of precipitation in the Lake Urmia (LU) basin was analyzed using the daily extreme precipitation data of 30 rain gauges in the statistical period of 1991-2018. The uniformity of OTEP was tested by Rayleigh and Kuiper’s tests at 0.1, 0.05, and 0.01 levels. The slope of the trend line for OTEP was estimated using the modified Sen slope estimator. The uniformity of OTEP was rejected at each level. The results revealed two strong seasons: late winter and early spring (S1) and autumn (S2) for OTEP. The results showed a general median seasonality index of 0.3, which changed to 0.82 and 0.9 for S1 and S2, respectively, after dividing the whole year into two seasons. The seasonal strength of S1 was similar in both the western and eastern parts of LU, but the west of the lake was stronger than the eastern part in S2. In S1, negative and positive trends in the OTEP were observed on average in 40% and 60% of the stations, respectively, with corresponding values of 77% and 27% for S2, respectively.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb