Search published articles


Showing 2 results for Sarcheshmehpoor

Majid Vahdatkhah, Mohammad Hady Farpoor, Mehdi Sarcheshmehpoor,
Volume 17, Issue 64 (summer 2013)
Abstract

Study of land use effects on soil quality indicators leads to sustainable management and preventing progressive land degradation. The TM (1987) and ETM+ (2000 and 2005) data were used to study land use change effects in Mahan-Joopar area on soil quality indicators. Fifty random soil samples from 0-30 cm depth of each land use were taken using provided maps. Organic matter, microbial respiration potential, bulk density, pH, EC, and soil texture were investigated as soil quality indicators. Eight land uses including fruit orchards, woodlands, pistachio orchards, cultivated, barren, bare land, fallowed, and haloxylone land were detected. Results showed overall accuracies of 89.4, 95.2, and 91.7 % with kappa coefficients of 85, 92, and 88% for maps provided in 1987, 2000, and 2005, respectively. Generally, the investigated quality indicators showed that woodlands, fruit orchards, cultivated land, and pistachio orchards enhanced soil quality better than other land uses.
M. Sarmast, M. H. Farpoor, M. Sarcheshmehpoor, M. Karimian Eghbal,
Volume 18, Issue 68 (summer 2014)
Abstract

Biocalcite infilling and bridging in a sandy soil was studied in the present research. Effects of 2 bacterial species (Sporosarcina pasteurii and Sporosarcina ureae), 3 reactant concentrations (0.5, 1.0, and 1.5 M of urea and CaCl2 mixture), and 6 reaction times (12, 24, 48, 96, 192, and 288 hr) on saturated hydraulic conductivity and mechanical strength of a sandy soil were studied as a factorial experiment. Soil samples were selected from sand dunes of Joopar area, Kerman Province. Bacterial inoculums and reactant solutions were daily added to soil columns. Results of the study showed that S. pasteuriihad had a higher effect on decreasing hydraulic conductivity of the treated samples (11.57 cm/h) compared to the blank (41.61 cm/h) than S. ureae. Increasing reaction times (from 12 to 288 hrs) and reactant concentrations (from 0.5 to 1.5 M) decreased hydraulic conductivity by 49 and 16 %, respectively. S. pasteurii increased strength of treated samples up to 2.6 Mpa pressure compared to S. ureae. Reactant concentrations and reaction times increased soil strength significantly (2.13 and 4.1 Mpa, respectively). Micromorphological observation showed calcite crystals bridging soil particles and filling pore spaces.

Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb