Search published articles


Showing 4 results for Shahnazari

M. Bahari, A. Shahnazari,
Volume 19, Issue 72 (summer 2015)
Abstract

Transporting borrow materials for proper infrastructure of water channels to bear the load of such structures is important in the development plans. Therefore, in this research clay nanocomposite material with a weight ratio of %1 was added to the soil. Soil sample was taken from the bed of the C25 canal (distributary of GanjAfrooz diversion dam within Alborz project area) at various intervals and the depth of 1 meter. Unconfined compression strength and consolidation tests were performed on the selected soil. The results showed that the addition of nanoclay to the soil increased the rate of shear resistance, cohesion property and compressibility of soil, respectively, equal to 14.13, 14.13and 82.76 percent. Also, angle of failure and ultimate void ratio decreased. As a result, the addition of nanoclay to the soil makes soil strength and stability greater and there are no problems caused by bed erosion and transporting of borrow material for infrastructure of channel.
M. Arabfard, A. Shahnazari, M. Ziatabar,
Volume 23, Issue 4 (winter 2020)
Abstract

Localized irrigation methods can be used to manage low water holding capacity in the sandy soils. In this research, the effects of different irrigation systems including pot, tape and drip irrigation with gravity pressures of 0.5, 1.5 and 3 meters on the sandy soil moisture distribution under watermelon cultivation were compared with the furrow irrigation as the control treatment. The moisture content of the soil at different depths and at the distance of 5 and 20 cm from the plant was measured using the TDR device. Water distribution study showed that in the pot irrigation method, the moisture content of different depths of soil was kept constant by 16% during the irrigation interval, but the highest moisture content was observed in gravitional drip irrigation treatment at the depths of 40, 50 and 60 cm; in contrast, the lowest amount of moisture was observed in the pot irrigation treatment. In tape and gravitional drip irrigation system with gravity pressure, in addition to the adjustment soil moisture up to 15 to 22% within the wetting front, soil moisture can be kept almost constant by pulsed irrigation technique. Therefore, while providing the use of drip irrigation system with minimum water pressure available in most of the agricultural land (0.5 m), using pot irrigation can ensure sandy soil moisture retention and soil for the cultivation of fruits such as watermelon plants.

F. Zarei, M.r. Nouri Emamzadehei, A.r. Ghasemi Dastgerdi, A. Shahnazari,
Volume 26, Issue 4 (Winiter 2023)
Abstract

The pattern of root distribution in layered soils is one of the significant issues in the calculations of soil water and irrigation management and planning. The objective of this study was to determine the pattern of root distribution of soybean in layered soils and its effect on water uptake. The research was conducted in a completely randomized design with 15 treatments consisting of three different textures of soil (light, heavy, and medium) in four replications. The pattern of root distribution was monitored by the sampling of columns at the end of the growth period of the soybean. It was observed that the presence of the layer with medium texture has led to better plant development and growth after comparing the treatments in terms of plant growth. In general, root length density decreased with increasing soil depth, except in cases where there were different layers of soil, and root length density takes place in the following order: root length density in layers with medium texture≥ heavy texture≥ light texture. The rate of root water uptake rate was highest in the sandy layers, intermediate in clay, and lowest in loamy texture. Also, the rate of root water uptake rate increased significantly with increasing depth regardless of treatments. It can be concluded that the pattern of root distribution and plant growth is significantly affected by soil texture and its stratification.

A. Shahnazari, S. Sadeghi,
Volume 27, Issue 2 (Summer 2023)
Abstract

In the present paper, crop pattern criteria have been evaluated relying on sustainable development to increase agricultural water productivity. Seven criteria were selected as the main environmental and economic criteria and were prioritized and reviewed for important and strategic products in the Tajan catchment of Mazandaran province. Criteria prioritization was done using optimization through a genetic algorithm with an objective function based on sustainable development. Then, physical and economic productivity indices were calculated to determine the productivity value. Based on the results, in the selection of the crop pattern, firstly, the category of economic criteria and finally the category of environmental criteria have been given attention to the farmers in the current situation. But in the genetic optimization algorithm, all priorities have a similar order from the environmental point of view and then from the economic point of view although each product has its order of criteria. By this prioritization, the parameters of the cultivated area, the volume of water consumed, and the amount of chemical fertilizers have decreased on average by 26%, 34%, and 21%, respectively, and the parameters of product performance and profitability have increased by 43% and 61%, respectively. In addition to providing environmental standards and increasing sustainable development, this prioritization causes an average increase in physical productivity by 84% and an increase in economic productivity by 72%.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb