Search published articles


Showing 15 results for Soleimani

M. J. Soleimani,
Volume 9, Issue 2 (summer 2005)
Abstract

Some of the field crops are severely affected by the Fusarium foot and root-rot in the west of Iran, Hamadan. Pathogenic Fusarium species are potentially severe destructive diseases and could be a major limiting factor for the cereals and potato production in this province. The purpose of this study was to determine the possible effect of soil solarization on the population dynamics of Fusarium spp. The propagules under Hamadan climatic conditions. Pre-tarping irrigation to achieve the field capacity was carried out prior to the various treatments including the black and transparent polyethylene plastic sheets. The experiment was performed in a completely randomized block design with three replicates, in a naturally infested soil. After three, five and eight weeks, soil samples were collected from different soil depths in appropriate plots. The propagule numbers of Fusaria were counted through dilution plate method using selective Nash & Synder and PDA media. The results indicated that the propagules of Fusarium in treated soils (five and eight weeks treatments) were significantly decreased as compared with the three week treated and untreated control plots. Better results obtained with the transparent sheets after eight weeks, followed by treatments with five weeks of mulching. Accordingly, the hydrothermal control of the Fusarium foot and the root-rot disease seem to be effective under the cool and temperate area of Hamadan.
M. Soleimani, M. Shahedi,
Volume 10, Issue 2 (summer 2006)
Abstract

Isotherm curves are useful for the designing of dryer as well as controling of the seed moisture content during storage and drying process. To study the curves, this research was performed on the basis of two factorial experiments including three factors: (1) hybrid at two levels (Three Way Cross 647 and Single Cross 704) (2) temperature at 6 levels (from 5 to 55°C) and (3) Relative Humidity (RH) at 5 levels (from 10 to 90 percent) for the analysis of the adsorption and desorption phenomena. For maintaining RH at the above mentioned ranges, glycerol solutions with different concentrations were used. The results showed that the relationship between solutions concentration and their RH was non-linear and somewhat related to temperature. Also, statistical analysis displayed that for 3 factors of tepmerature , RH and hybrid, the effects on Equilibrium Moisture Content (EMC) in both adsorption and desorption phenomena were significant at α=1%. Comparisons of means showed that hybrid 704 had higher EMC values than did hybrid 647 under the same conditions, in other words, hybrid 704 produced lower aw than did hybrid 647 at the same moisture content. Fitting experimental values on non-linear models (Henderson, Chung-Pfost and Oswin) showed Oswin as the best model for adsorption and desorption curves for hybrid 704 and also for adsorption curve for hybrid 647 , but the best model for desorption curve for hybrid 647 was Chung-Pfost.
S.m Ziaee, M Kafi, J Shabahang, H Khazaee, M Soleimani,
Volume 13, Issue 47 (4-2009)
Abstract

Production of halophytes using saline waters and soils, and feeding livestock with them, is one of the most sustainable ways of desert ecosystems conservation and food production for people living in these areas. A field experiment was conducted at Salinity Research Station, Ferdowsi University of Mashhad, in 2007 to evaluate the effect of planting density and harvesting time on oil and protein yield of Kochia. Treatments were arranged as a split-plot based on a randomized complete block design with three replications. Planting density (10, 20, 30 and 40 plants m-2) as assigned to main plots and two dates of harvesting (after 50% flowering and full maturity) constituted the sub-plots. Plant density had a significant effect on grain yield, mean seed weight, harvest index, oil yield, oil content and protein yield at maturity stage. Forage and protein yield were also affected by plant density at the harvest date of 50% flowering. Total dry matter, protein yield and percentage differed significantly between the two harvest dates. The greatest grain yield (2590 kg ha-1) and oil yield (357.7 kg ha-1) were achieved from 20 plants m-2, whereas those from 10 plants m-2 were minimal. Maximum protein yield (3390 Kg ha-1) was obtained from the planting density of 30 plants m-2 at 50% flowering stage. Based on the results of this study, the best qualitative yields for Kochia could be obtained from a planting density of 30 plants m-2 after 50% flowering but one may recommend planting Kochia at 20 plants m-2 for a high grain or oil production.
S. Z. Mosavi Khatir, A. Kavian, A. K. Soleimani,
Volume 14, Issue 53 (fall 2010)
Abstract

In this research, logistic regression analysis was used to create a landslide hazard map for Sajaroud basin. At first, an inventory map of 95 landslides was used to preduce a dependent variable, which takes a value of 0 for absence and 1 for presence of landslides. Ten factors affecting landslide occurence such as elevation , slope gradient, slope aspect, slope curvature, rainfall, distance from fault, distance from drainage, distance from road , land use and geology were taken as independent parameters. The effect of each parameter on landslide occurrence was determined from the corresponding coefficient that appears in the logistic regression function. The interpretation of the coefficients showed that road network plays the most important role in determining landslide occurrence. Elevation, curvature, rainfall and distance from fault were excluded from the final analysis because these variables did not significantly add to the predictive power of the logistic regression. After transferring final probability function into Arc/view 3.2 software, landslide susceptibility map was prepared. The results of accuracy assessment showed that overall accuracy of produced map is 85.3 percent. Therefore, 53% of the area was located in very low hazard, 18.3% in low hazard, 21% in moderate hazard and 7.7 % residual area is located in high hazard regions. Model and then susceptibility map verity was assessed using -2LL, Cox and Snell R2, Nagelkerk R2, and was validated.
Sh. Yousofvand, M. Habibnejad, K. Soleimani, M. Rezaie Pasha,
Volume 17, Issue 65 (fall 2013)
Abstract

Soil erodibility and gully erosion and their expansion occur under geological formation and soil characteristics. This study aims to find the rate of soil and formation effects on gully erosion in Seifabad watershed. To that end, aerial and field work were used together to determine the rate & expansion of 17 gullies in 12 years' period from 1997 to 2009. The soils were sampled for each gully in 50% interval distance with 0-30 cm horizontal surfaces and >30 cm depth. Some factors were estimated from the soil such as EC, PH, Silt, Clay, Sand & limeston percentages. Statistical analysis was done using SPSS 14 through non-parametric tests such as Kruskal-Wallis & Mann-Whitney. Spearman coefficient was used to investigate the relation between volume of gully & litological factors. The results showed a positive correlation at 1% level for the PH with the gully erodibility in surface soil, but for the depth of soil this relation belonged to the silt percentage, and sand showed a negative relation at 5%level with the volume of the gully sediments. Finally, there was no statistical relationship between geological formation and the sediment yield in gullies.
J. Abedi Koupai, J. Khajeali, R. Soleimani, R. Mollaei,
Volume 18, Issue 67 (Spring 2014)
Abstract

As increasing of disaster such as drought and pest invasion in recent decades, it is essential to find out practical approaches in optimizing water use and water management for reduce the adverse effects of this disaster in agriculture. In order to study the effects of water stress and pest stress on corn yield, an experiment was conducted in the research farm of Isfahan University of Technology. In sprayed and non sprayed of the field, a factorial design, based on the completely randomized block, was carried out with three treatments of irrigation regimes including intensive stress (50% water requirement), moderate stress (75% water requirement) and no water stress in four stages of corn growth from seed germination until tasseling, from tasseling until milky, from milky until harvest and the whole period of corn growth, in four replications for one year (2005). The results showed that applying water stress on corn reduced seed yield between 6-62% and also decreased other agronomic characters except protein percentage. Water stress in non sprayed condition, reduced significantly more physiological characteristics of corn compared to the sprayed condition. Intensive water stress and pests stresses increasd 3 and 13% of percentage protein, respectively. In sprayed condition applying moderate stress in first stages of corn until the first of third stage is suggested in drought condition.
P. Ahmadpour, M. Soleimani,
Volume 19, Issue 73 (fall 2015)
Abstract

Cadmium (Cd) is a metal with high toxicity and solubility in water, which is a serious environmental threat to human health. Phytoremediation is an environment-friendly method and a promising new and cost effective technology that uses plants to clean organic and inorganic contaminated media. This study was conducted to evaluate the potential of Jatropha curcas for remediation of soils contaminated with Cd. Seedlings were planted in the soil spiked with Cd in amounts of 0, 25, 50, 75, 100 and 150 mg kg-1 (Cd0, Cd25, Cd50, Cd75, Cd100 and Cd150) for a period of five months. Biocentration factor (BCF, metal concentration ratio of plant roots to soil), translocation factor (TF, metal concentration ratio of plant shoots to soil) and removal efficiency (RE, total metal removed by plant biomass to total metal loaded in soil) were determined. Cd concentrations among plant parts were in the following trend: roots>stems>leaves. The highest total Cd concentration (up to 1100 mg kg-1) and the highest RE were found in Cd150 and Cd25, respectively. BCF and TF of the plant were more and less than 1, respectively. Hence, although this species has a potential to be used in phytostabilization of Cd-contaminated soil, more researches in the field condition are needed.


A. H. Boali, H. Bashari, R. Jafari, M. Soleimani,
Volume 21, Issue 2 (Summer 2017)
Abstract

Appropriate criteria and methods are required to assess desertification potential in various ecosystems. This paper aimed to assess desertification levels in Segzi plain located in east part of Isfahan, with a focus on soil quality criteria used in MEDALUS model. Bayesian Belief Networks (BBNs) were also used to convert MEDALUS model into a predictive, cause and effects model. Soil samples were collected from 17 soil profiles in all land units and some of their characteristics such as texture, soluble sodium and chlorine, organic material, Sodium Absorption Ratio (SAR), Electrical Conductivity (EC) and CaSo4 of all soil samples were determined in soil laboratory. The effects of measured soil quality indicators on desertification intensity levels were assessed using sensitivity and scenario analysis in BBNs. Results showed that the used integrated method can appropriately accommodate uncertainty in the desertification assessments approaches created as a result of the influence of different soil characteristics on desertification. According to the results of MEDALUS model, 28.28 % and 71.72 % of the study area were classified as poor and moderate areas in terms of soil quality respectively. Sensitivity analysis by both models showed that soil organic matter, SAR and EC were identified as the most important edaphic variables responsible for desertification in the study area. Evaluating the effects of various management practices on these variables can assist managers to achieve sound management strategies for controlling desertification.
 


F. Hosseini, M. R. Mosaddeghi, M. A. Hajabbasi, M. R. Sabzalian, M. Soleimani, M. Sepehri,
Volume 21, Issue 2 (Summer 2017)
Abstract

Soil water repellency can affect several soil properties such as aggregate stability. Soil texture and organic matter are two main internal factors responsible for the variability of soil water repellency. Major sources of organic matter in soil include plant residues, and exudates of plant roots and soil microorganisms. Tall fescue (Festuca arundinacea Schreb.) as an important cool-season perennial forage grass is usually infected by a fungal endophyte (Epichloë coenophiala) which often enhances resistance to biotic and abiotic stresses as well as altering the litter decomposition rate and soil properties. In this study, the effects of endophyte-infected (E+) and endophyte-free (E−) tall fescue residues (in three different levels of 0, 1 and 2%) on soil organic carbon, basal microbial respiration, water-dispersible clay and water repellency index (determined by intrinsic sorptivity method) were investigated in four texturally-different soils in the laboratory. E+ and E− tall fescue residues were completely mixed with moist soil samples and then were incubated at 25 °C. During two months of incubation period, the amended soil samples were subjected to 10 wetting and drying cycles and then, the above-mentioned soil properties were measured. The results indicated that soil organic carbon and water-dispersible clay were greater, while basal soil respiration and repellency index were lower in fine-textured soils. Water repellency index was increased by production of hydrophobic substances (for the rate of 1%) and was reduced by induced greater soil porosity (for the rate of 2%). Presence of endophyte in plant residues had no significant effect on water sorptivity, ethanol sorptivity and water repellency index; nevertheless, E+ residues increased soil organic carbon and decreased water-dispersible clay significantly. Overall, it is concluded that tall fescue residues, especially those with E+, can improve soil physical quality due to improving soil organic carbon storage and water repellency index and decreasing water-dispersible clay (as an index for aggregate instability). These E+ species and the residues have great potential to be used in sustainable soil conservational managements.
 


M. Zarea Khormizi, A. Kavian, K. Soleimani, K. Nosrati,
Volume 21, Issue 2 (Summer 2017)
Abstract

Obtaining information about relative importance of sediment sources and their contributions on sediment production and thus identification of on-site critical areas is required for implementing soil and water conservations and sediment control programs. For this reason, in this study 35 geochemical tracers and organic carbon were measured in 45 samples of sediment sources and in 11 watershed sediment samples to determine the sediment deposit contribution of each land use as sediment resources in Kond watershed of Tehran province. Based on the results of Kruskal-Wallis test, from among 35 measured traces, 10 tracers including Al, As, Be, Ca, Mo, P, Pb, S, Zn and OC had ability to discriminate sediment sources with less than 1% confidence level. Then, 5 tracers: OC, S, P, Zn and As were selected as optimum composite using Discriminant Function Analysis (DFA) with 0.000 confidence coefficient that had distinguishing capability of sediment sources by 97.8% correct assignation. Finally, the results of multivariate mixing model showed that contribution means of orchard, range and residential were 1.54, 14.27 and 84.18% in sediment production, respectively. Also, the sum of squares of the error was 0.33. The results of this study can be used in selecting an appropriate method for sediment control in studied area.


A. Kavian , A. Alipour, K. Soleimani, L. Gholami,
Volume 23, Issue 1 (Spring 2019)
Abstract

Nowadays, acid rain serves as one of the most serious environmental problems has affected many regions in the world. This phenomenon is characterized by many environmental impacts, such as soil contamination and degradation. Acid rain immediately affects soil, causing soil particles to breakdown and be dispersed; this is the first step to initiate the soil erosion. Therefore, in this study, the effect of different pH levels of acid rain (at different levels) on the soil splash was investigated under laboratory conditions using a rain simulator and a cup splash. In the experiments, acid rains, with the pH values of 3.75, 4.25, 5.25 and normal rains at three intensities of 40, 60 and 80 mmh-1, were studied; finally, a number of 36 samples were taken for statistical analyses. SPSS 23 and EXCEL 2013 software and one way and two-way ANOVA were used for the statistical analysis at a confidence level of 95%. The results showed that at the intensities of 40 and 60 mmh-1, the splash rate was significantly different in all pH treatments, and the acid rain with pH of 3.75 showed the highest splash rate. However, no significant difference was found at the rain intensity of 80 mmh-1, despite the higher splash rate at the pH of 4.25 and 5.25 treatments. Also, the results of the comparison of the means showed that the soil splash rate was also increased with enhancing rain intensity. Finally, the two-way ANOVA test showed that the simultaneous interaction effects of the two factors of pH and rain intensity on soil splash was not significant.

H. Aalipour, A. Nikbakht, N. Etemadi, M. Soleimani, F. Rejali,
Volume 23, Issue 2 (Summer 2019)
Abstract

Trees decline is a complex physiological disease that results from the interactions between several factors, one of which is heavy metal stress that ultimately leads to the death of trees. This experiment, which was conducted during 2016-2017 at the campus facility of the Department of Horticulture at Isfahan University of Technology, was conducted to investigate the effects of inoculation with arbuscular mycorrhizal fungi (AMF) (Rhizophagus intraradices and Funneliformis mosseae inoculated, and the combination of both species) and plant growth promoting rhizobacteria (PGPR), Pseudomonas Flourescens, on the growth responses of Arizona cypress (Cupressus arizonica G) to different concentrations of cadmium (0, 5, 10, 15, 20); this was done as a factorial experiment based on a completely randomized design, with three replications. The interactions between AMF, PGPR, and cadmium on potassium and iron concentration, height, and dry weight of Arizona cypress seedlings were significant. By increasing the concentration of cadmium in most of the treatments, the colonization, phosphorus, potassium and iron concentrations, height and dry weight of the shoot Arizona cypress seedlings were decreased, while the percentage of electrolyte leakage and proline content were increased. The AMF-inoculated plants increased phosphorus, potassium and iron concentrations, Height, shoot dry weight, proline content and reduced electrolyte leakage percentage, as compared to non-mycorrhizal (control) plants. In plants inoculated with both microorganism (mycorrhizal fungi and Pseudomonas), there was a positive effect regarding the concentration of nutrients such as potassium and iron; there was also the improvement of growth characteristics such as height and dry weight of the seedlings, as well as the appearance and freshness of the plant. The results, therefore, showed that inoculation of Arizona cypress seedlings with the combination of mycorrhizal fungi and Pseudomonas fluorescens bacteria could have a positive effect on the growth and survival of this tree under Cadmium stress condition.

R. Torki Harchegani, N. Mirghaffari, M. Soleimani Aminabadi,
Volume 23, Issue 2 (Summer 2019)
Abstract

Fruits and citrus wastes are generated in the food industry in large quantities. Their management in Iran, as one of the major hubs of fruits and citrus production, is of great importance. In this study, the biochar samples were prepared from pomegranate, orange and lemon peel waste produced in a juice factory using the pyrolysis process in the range of 400-500 °C; then their efficiency for zinc adsorption from an aqueous solution was investigated. The kinetic and isotherm data of zinc adsorption were fitted by the linear and nonlinear forms of the Langmuir and Frendlich isotherm models and the first-order and second-order pseudo-kinetics models. The results showed that under the experimental conditions applied, the maximum amount of zinc absorption by biochars derived from pomegranate, orange and lemon peel was 2.42, 1.83 and 3.17 mg/g, respectively. The results of adsorption isotherm models also showed that the use of the linear form could lead to a completely different interpretation, as compared to the original form of the model. Based on the linear forms, the Langmuir isotherm was the best; meanwhile, according to the non-linear forms, the Freundlich isotherm was the best model to describe the adsorption data. In addition, the reaction kinetics indicated that both original and linear models had the same results, and the data were better fitted by the pseudo-second order model.

M. Mirjani, M. Soleimani, V. Salari,
Volume 24, Issue 1 (Spring 2020)
Abstract

Growing concerns about water pollution and its potentially harmful effects on human being have stimulated serious efforts to develop reliable biological monitoring techniques. The bioluminescent analysis is one of the most promising approaches for the biomonitoring of the environment, due to the sensitivity of the luminescent system to even micro quantities of the pollutants. The aim of the current study was to assess the petroleum compounds toxicity using Vibrio fischeri bacterium. The growth pattern of the bacterium was determined in photobacterium broth using the optical density measurement at 600 nm, which showed the optimum growth time of 16-18 hours after inoculation. In this research, the effects of environmental parameters such as temperature, pH and various concentrations of oil on the growth and luminescence of Vibrio fischeri were examined. The results revealed that the optimum growth conditions of the bacterium after 16 hours included the temperature of 25 °C and pH 7. Besides, the growth and luminescence intensity of Vibrio fischeri were a function of total petroleum hydrocarbon concentrations in the medium, which were significantly reduced in oil concentrations by more than 4% w/v. Therefore, the Vibrio fischeri could, therefore, have the potential for monitoring of petroleum pollutants in the aqueous media.

F. Beigmohammadi, E. Solgi, M. Soleimani, A.a. Besalatpour,
Volume 26, Issue 3 (Fall 2022)
Abstract

The industrial areas are located near residential centers in the city of Arak and potentially toxic elements (PTEs) pollution is a serious threat to human health and living organisms in this area. Meanwhile, soil contamination by PTEs is one of the challenges in this region and various studies have been conducted in this area. Meta-analysis studies provide a comprehensive evaluation of the results of a subject. In the present study, soil contamination data for PTEs in the 11 years (2009 to 2020) were studied through the studies conducted in Arak. In this study, the risk, potential toxicity, and carcinogenic and non-carcinogenic risks of PETs were assessed using indices and mathematical relationships. Based on the results of pollution indices, the soil of Arak city in terms of PETs including Zn, Cd, Cr, Ni, As, Pb, Cu, and Hg were categorized into the polluted and highly polluted classes. The soil of the region in terms of PETs has significant ecological risk and acute toxicity. Cadmium, arsenic, and mercury showed the ecological risk of 49.3%, 23.2%, and 18.3% respectively, and nickel, chromium, and arsenic were responsible for 34.7%, 23.03%, and 22.07% of the toxicity potential of PETs in the soil. Arsenic, nickel, and chromium have the highest carcinogenic risk for children in both the ingestion and inhalation pathways, and chromium, arsenic, and nickel have the highest carcinogenic risk from the inhalation pathway for adults. According to the results, the most considerable PETs in the study area including As, Cd, and Pb, and the most important source of their emission in Arak are anthropogenic resources and industries.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb