Search published articles


Showing 2 results for Tarkesh Esfahani

M. Arabi, A. Soffianian , M. Tarkesh Esfahani,
Volume 17, Issue 63 (Spring 2013)
Abstract

Physicochemical characteristics of soil, land cover/use and human activities have effects on heavy metals distribution. In this study, we applied Classification and Regression Tree model (CART) to predict the spatial distribution of zinc in surface soil of Hamadan province under Geographic Information System environment. Two approaches were used to build the model. In the first approach, 10% of total data were randomly selected as test data and residual data were used for building model. In the second approach, all data were used to build and evaluate the CART model. Determination coefficient (R2) and Mean Square Error (MSE) were applied to estimate the accuracy of model. Final model included 51 nodes and 26 terminal nodes (leaf). Calcium carbonate, slope, sand, silt and land use/cover were determined by the CART model to predict spatial distribution of Zn as the most important independent variables. The regions of western Hamadan province had the highest concentration of Zn whereas the lowest concentration of Zn occurred in the regions of northern Hamadan province. The results indicate good accuracy of CART model using R2 and MSE indices.
M. Kazemi, H. Karimzadeh, M. Tarkesh Esfahani, H. Bashari,
Volume 22, Issue 4 (Winter 2019)
Abstract

Evaluating the possible relationships between vegetation and environmental characteristics can assist managers to identify effective factors influencing plants establishment and to characterize various vegetation communities. This study was aimed to evaluate the effects of long term grazing exclusion ( more than 33 years) and the controlled grazing system (resting – rotation grazing system) on the vegetation distribution and some soil properties in the Hamzavi research station in Hanna area-Semirom, Isfahan. Six transects (three parallel transects and three transects perpendicular to the general slope of the area) were established in each area and 10 square plots with the size of 2m2 were placed along each transect; then, the cover percentage, production and list of all plant species were recorded. In each area, eighteen plots were collected randomly and in each plot, five soil samples were collected from 0-30 cm of the soil and then the samples were mixed and one sample of the compound was selected as an evidence plot. Soil properties such as pH, EC, CaCO3, organic carbon, absorbable phosphor, total nitrogen, K, Ca, Mg, soil saturated percentage, cation exchange capacity, soil clay, silt, sand and fine sand contents were measured in the soil laboratory. The independent t test was used to compare the vegetation characteristics in two areas. Cation exchange capacity, CaCO3, gravel percentage, soil phosphor content and grazing management were identified as the most discriminative factors in separating vegetation communities based on Canonical correspondence analysis (CCA) and cluster analysis. Controlled grazing management significantly modified some soil characteristics and increased the production (352 versus 184.2 kg/ha) and vegetation cover percentage (25.46 versus 18.37), as compared to the exclusion area (α= 5%). The vegetation density was increased significantly in the exclusion rather than controlled grazing area (3.03 versus 2.02 plant/m2). This study, therefore, revealed that controlled grazing management was more effective on improving some soil quality and vegetation characteristics rather than p long term grazing exclusion in the semi-arid ecosystems. So, avoiding long term grazing exclusion in semi-arid rangelands is suggested.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb