Search published articles


Showing 2 results for Teimouri

M.r. Ghanbarpour , M. Teimouri, S.h. Gholami,
Volume 12, Issue 44 (summer 2008)
Abstract

Estimating the volume of groundwater contribution to runoff within a watershed is one of the most important subjects in water resources management and hydrology. In this paper, groundwater contribution to total runoff as a base flow index was estimated using hydrograph separation in six stream gauging stations in southwest of Iran. The major objective of this research is to distinguish the most suitable automated hydrograph separation and base flow estimation method. Conventional automated hydrograph separation methods including local minimum and recursive digital filter with the parameter of 0.9 to 0.975 were compared with recession analysis numerically and graphically. The results showed that recursive digital filter with the parameter of 0.925 is the most accurate method to estimate base flow in the studied watersheds. This research also indicated that the base flow index estimated through the selected method varies from 0.79 to 0.88 in the study area.
M. Teimouri, M.r. Ghanbarpour, M. Bashirgonbad, M. Zolfaghari, S. Kazemikia,
Volume 15, Issue 57 (fall 2011)
Abstract

Baseflow separation has long been an important topic in hydrology and has a crucial role in water resources management in arid and semi arid regions like Iran. In this paper, a comparison among commonly used automated techniques for hydrograph separation including theoretical method of local minimum and digital filter of one parameter with different filtering parameters of 0.9 to 0.975 and two parameter methods was done to estimate baseflow using baseflow index. For this purpose, daily flow data in some stream gauging stations in west Azarbaijan province were used. For comparison, in addition to baseflow index the graphical method based on the observed daily flow data and correlation coefficient among them was utilized. The main aim of this research is distinguishing the most suitable method in hydrograph separation and estimating the baseflow. Results showed that in different methods baseflow largely contributes to streamflow and also has high fluctuations. However, the results of the digital filter with two parameters appear to be hydrologically more plausible than those of the other methods, but the results of digital filter with proper parameter - in this region one parameter method with filter of 0.925- has proper estimation accuracy. Also, the baseflow index based on method of two parameter digital filtering varies from 0.54 to 0.78 in this study area.

Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb