Search published articles


Showing 3 results for Zahiri

Z. Mollaee, J. Zahiri, S. Jalili, M. R. Ansari, A. Taghizadeh,
Volume 22, Issue 2 (Summer 2018)
Abstract

Spectral Reflectance of suspended sediment concentration (SSC) remotely sensed by satellite images is an alternative and economically efficient method to measure SSC in inland waters such as rivers and lakes, coastal waters, and oceans. This paper retrieved SSC from satellite remote sensing imagery using radial basis function networks (RBF). In-situ measurement of SSC, water flow data, as well as MODIS band 1 and band ratio of band 2 to 1 were the inputs of the RBF. A multi-regression method was also used to make a relationship between the in-situ data and the water reflectance data retrieved from MODIS bands. The results showed that RBF had the best SSC prediction error (RMSE=0.19), as compared to the multi-regression and sediment rating curve methods, with the RMSE of 0.29 and 0.21, respectively.

J. Zahiri, M. Ashnavar,
Volume 23, Issue 4 (Special Issue of Flood and Soil Erosion, Winter 2019)
Abstract

Hydrodynamic models proposed for simulating flow hydraulic in rivers assume the flow in one direction and simulate the hydraulic parameters based on the one-dimensional Saint-Venant equations. In this research, a two-dimensional HEC-RAS model was used to simulate the flow in the Karun River, between Mollasani and Farsiat stations. Geographic information system (GIS) and river cross sections were used to prepare the altitude map using the satellite image of the study area. Modeling results in river bends showed that the maximum velocity occurred in the outer bend, which coincided with the flow mechanism in the bends. Based on the results, grid type and density have little effect on flow depth modeling. However, the characteristics of the mesh used had a great influence on the velocity distribution, so that the regular high-density mesh had the best accuracy in simulating the flow velocity. Statistical analysis showed that the RMSE for the flow discharge and flow depth were 17.95 m3/s and 0.05 m, respectively. In addition, the Nash–Sutcliffe efficiency index was calculated to be above 0.9 for the discharge and flow depth, which could be considered as a desirable value.

M. Karim Zadeh, J. Zahiri, V. Nobakht,
Volume 26, Issue 4 (Winiter 2023)
Abstract

Reservoir dams have had problems despite all the benefits for humans. one of the most important issues is exposing a large amount of water in contact with the air causing a large amount of water to evaporate. Using chemical methods including heavy alcohols is one of the evaporation suppression methods. In this study, three emulsions of octadecanol, hexadecanol, and a combination of octadecanol, and hexadecanol along with Brij-35 and two physical methods of the canopy and floating balls were used to evaluate the performance of different emulsions. A one-way analysis of variance was applied to compare the mean of evaporation in different chemical and physical methods and a two-way analysis of variance was performed to investigate the main and interaction effects of different meteorological parameters on the value of evaporation. The mean comparison of the evaporation in different methods showed that the two physical methods of the canopy and floating balls had better performance than the chemical methods, and the octadecanol was more efficient than the two other chemical methods. The results of one-way ANOVA showed that among the chemical methods, the octadecanol had no significant difference with floating balls at a 99% probability level (P <0.01). Two-way ANOVA indicated that air temperature and relative humidity had the greatest effect on evaporation. Examination of the effect of different levels of meteorological parameters on the performance of evaporation reduction methods showed that at low temperatures, octadecanol had poor performance than the two physical methods but with increasing temperature, its performance improved. In addition, this monolayer had a suitable performance at low wind speeds compared to physical methods. By increasing wind speed, its performance is severely affected and its efficiency decreases. So, at temperatures above 37° C, an increase in wind speed from 3.5 m/s to above 8.7 m/s has increased evaporation by more than 50%. The effects of monolayers and other evaporation suppression methods on the quality characteristics of the water including dissolved oxygen are significant and should be investigated in future research.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb