Search published articles


Showing 2 results for shahmoradi

S. Shahmoradi, M. Afyuni, M. A. Hajabbasi, A. H. Khoshgoftarmanesh, M. Shirvani,
Volume 19, Issue 71 (spring 2015)
Abstract

In this work, the effect of raw and modified bentonite and zeolite with trivalent iron on the stabilization of water-soluble and adsorbed arsenic in a calcareous soil was studied. Raw and modified bentonite and zeolite were added to the soil in different weights in a completely randomized block design with three replications and kept to field capacity soil moisture content of 80% for 8 weeks. The concentrations of water-soluble and adsorbed arsenic, water-soluble and absorbed phosphorus in soil and soil pH were measured. Treatments significantly affected the mobility of arsenic and phosphorus in soil. Raw zeolite and bentonite in different levels increased arsenic mobility (about 107 to 325 % and 259 to 350% respectively). Despite the change in surface properties of zeolites modified with iron, this treatment at different levels increased arsenic mobility in soils by about 124 to 246%. Bentonite modified with iron had the greatest effect on reducing arsenic mobility in soil (about 91%). Phosphate mobility was similar to arsenic in different treatments.


Msc S. Shahmoradi, Dr M. Afyuni, Dr M. Hajabbasi, Dr A. H. Khoshgoftarmanesh, Dr M. Shirvani,
Volume 21, Issue 2 (Summer 2017)
Abstract

During last century, waste water of gold mine has accumulated heavy metals such as lead, zinc and cadmium in Zarshuran region soil, and thus has increased epidemic disease in this region drastically. The purpose of this research was to reduce the mobility and bioavailability of zinc, lead and cadmium in rhizosphere of sunflower grown in soil around the mine by inorganic sorbents. A pot experiments was carried out with three levels of raw zeolites (1, 6, 12 wt%), three levels of raw bentonite (1, 6, 12 wt%) and control (without sorbent) in a completely randomized block design with three replications. After cultivation, soil and plant samples were taken and the concentration of lead, cadmium and zinc in their samples were measured. Different levels of bentonite reduced the absorbable concentration of lead and zinc; and also reduced their absorbable concentrations in plant tissue, but had no significant effect on reducing absorbable concentration of cadmium.  Transfer factor for all three metals in the roots was more than shoot and reducing the concentration of heavy metals in the plant had no impact on plant growth. According to the study, level of 12 wt% of the raw bentonite was the most suitable sorbent for the stabilization of lead and zinc; and level of 12 wt% for raw zeolite was the best sorbent for stabilization of cadmium.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb