Search published articles


Showing 5 results for Abutment

S. Kouchakzadeh,
Volume 5, Issue 1 (4-2001)
Abstract

Bridge abutments are usually located in the floodplain zone of rivers where velocity and shear stress are not uniformly distributed. The influence of channel geometry and lateral momentum transfer in compound flow field on the scouring phenomenon has not been fully investigated and understood yet. The impact of lateral momentum transfer on the local scour at abutments terminating in the floodplain of a compound channel is presented in this paper.

It is shown that, by accounting for lateral momentum transfer at small floodplain/main channel depth ratios (λa/H<0.3), estimates of maximum local scour depth are increased by up to 30%. Therefore, ignoring the influence of the lateral momentum transfer, in such circumstances, might result in unrealistic estimation of the scour depth. To draw a more general conclusion, more data are required to assess the influence of different parameters affecting the phenomenon in compound flow conditions.


A. Masjedi, M. Sobhani,
Volume 19, Issue 74 (1-2016)
Abstract

Riprap is used to control scouring around the bridge abutment. In order to study the stability of riprap around two bridge abutments with two different shapes, experiments were conducted in a laboratory flume made of Plexiglass in 180 degree bend.  In this research, several experiments were done by placing the two bridge abutments made of Plexiglas in a series of riprap. Experiments included two different types of riprap with different densities, four different diameters and constant rate of discharge under pure water condition. In each experiment, flow depth was measured in terms of moving threshold, then stability was calculated by using the data obtained. The results showed that in the same conditions chamfered wing-wall is greater than vertical-wall. So, chamfered wing-wall is, on average, 9 percent more stable than the vertical wall. 


M. Naserian, A. Masjedi,
Volume 21, Issue 4 (2-2018)
Abstract

River bend due to particular pattern, called 'Vortex Flow,' has greater erosion than straight path. Occurrence of scour around bridge abutment on curved paths is one of the main reasons for destruction of bridges. Riprap is one of the methods to control the scouring around the bridge abutment. The purpose of this study was to assess stability of the riprap around the bridge abutment at 180 degree river bend. In order to study stability of riprap around the bridge abutment, experiments were done in a laboratory flume made of Plexiglas under 180 degree bend, 2.8 m in central radius, 0.6 m in width and  R/B=4.67.  In this research, several experiments were done by placing a bridge abutment with vertical winged wall made of Plexiglas surrounded by a series of riprap.  Experiments were done by three different types of riprap with different density 1.7, 2.1 and 2.42, four different diameters 4.76, 9.52, 12.7 and 19.1 mm and four rates of discharge under pure water condition. In each experiment, flow depth was measured in terms of moving threshold and failure threshold and then the formulas were calculated by using data obtained. The results showed that the relative diameter of riprap increased with increasing Froude number in terms of moving threshold and failure threshold. Finally, the suitable formula to estimate diameter of riprap around the bridge abutment at 180 degree bend were presented in terms of moving threshold and failure threshold.

E. Yarmohammadi, S. Shabanlou, A. Rajabi,
Volume 25, Issue 1 (5-2021)
Abstract

Optimization of artificial intelligence (AI) models is a significant issue because it enhances the performance and flexibility of the numerical models. In this study, scour depth around bridge abutments with different shapes was estimated by means of ANFIS and ANFIS-Genetic Algorithm. In other words, the membership functions of the ANFIS model were optimized using the genetic algorithm, finding that the performance of ANFIS model was increased. Firstly, effective input parameters on the scour depth around bridge abutments were defined. Then, by using the input parameters, eleven ANFIS and ANFIS-GA models were produced. Next, the superior ANFIS and ANFIS-GA models were introduced by analyzing the numerical results. For example, the correlation coefficient and scatter index for ANFIS model were calculated to be 0.979 and 0.070; for ANFIS-GA, these were 0.986 and 0.056, respectively. In addition, the average discrepancy ratio (DRave) for ANFIS and ANFIS-GA models was 0.984 and 0.988, respectively. Also, it was shown that the ANFIS-GA models had more accuracy, as compared to the ANFIS models. Moreover, a sensitivity analysis showed that Froude number (Fr) and ratio of flow depth to radius of scour hole (h/L) were the most influential input parameters for simulating the scour depth around bridge abutments.

M. Sehat, A. Bordbar, A.r. Masjedi, M. Heidarnejad,
Volume 27, Issue 4 (12-2023)
Abstract

Today, abutments disrupt the normal flow of rivers and cause scouring and erosion of sedimentary materials around them, creating holes and resulting in much damage every year. Researchers have proposed various methods to reduce the power of water erosion. One of the essential methods in this regard is creating slots in abutments. Since the expansion of the scour hole endangers the stability of the bridge structure, this study examined the effect of slot dimensions in the support on the scour hole dimensions. The findings demonstrated that the presence of slots in abutments effectively reduces the dimensions of scour holes. With the slot, the volume of the scour hole can be reduced by up to 50%. Furthermore, as the relative speed of scouring increases by 75%, the depth of the scour hole also increased up to 140%. An increase in slot depth leads to a decrease in scour hole depth of up to 85%.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb