Search published articles


Showing 20 results for Deficit Irrigation

Sayed Farhad Mousavi, Behrouz Mostafazadeh, Shokrollah Absalan,
Volume 2, Issue 4 (1-1999)
Abstract

This study aims to evaluate the present management of border irrigation systems applied to wheat, alfalfa and sugar-beet farms in Boyer-Ahmad and Gachsaran cities in Kohgiloyeh and Boyer-Ahmad Province. Experimental farms included 8 alfalfa farms, 5 wheat farms and 5 sugar-beet farms. The experiments were conducted at different growth stages of plants and customary borders with prevalent dimensions, slopes, and management practices. The relationship between management allowable deficit, moisture deficit before irrigation, and infiltrated depth indicated that in most cases either “deficit irrigation” or “stress irrigation” had been applied. This type of irrigation has positive effects on water use but negative effects on supply of required soil moisture for plants. In the first to third irrigations, measured application efficiencies ranged from 40.8% to 100%, 52.2% to 100%, and 61.1% to 100%, respectively. Graphs of advance, recession, and ideal recession showed the effects of border slope and length on inflow cut time and uniformity of water distribution. Water infiltration curves showed the amount of deficit irrigation. The results showed that weak irrigation management is the result of three parameters: lack of knowledge on the part of farmers about soil moisture conditions and correct time for irrigation, weak irrigation scheduling, as well as an imbalance between available water supply and irrigation requirements which leads to wasting water and reduced irrigation efficiency.
S.h. Zand-Parsa, Gh.r. Soltani, A.r. Sepaskhah,
Volume 5, Issue 3 (10-2001)
Abstract

In this study, the optimum irrigation depths for corn grain production under different conditions, i.e. maximum grain yield production and maximum benefit under limited land and water conditions, were determined under sprinkler irrigation in Bajgah (15 km. north of Shiraz).

 The results showed that, the optimum depth of irrigation for maximum grain yield production was 77.0 cm. Because of low price of irrigation water and sensitivity of corn crop to water deficit, the optimum depths of water were 76.8 and 73.4 cm under land and water limitations, respectively. Therefore, under limited water conditions, only 4.7 percent of the full irrigation water (maximum corn grain production) can be saved for maximum profits.


M. K. Shaabani, T. Honar, M. Zibaei,
Volume 12, Issue 44 (7-2008)
Abstract

Limitations of rainfall and surface water resources farmers have to use both surface and subsurface resources for growing different crops. In this study optimal management of irrigation water allocation and cropping pattern utilizing conjunctive use of surface and subsurface water resources is studied. Also the effect of reducing water consumption in different growth stages with different irrigation strategies for major crops (wheat, barely, corn, sugar beet, rice) in Fars province was studied. The results of the study showed that optimal cropping pattern for the first season would be mainly wheat and in the second season would be corn and rice. Also in this model different policies for decreasing water demand were studied. Since crop water requirement in the second season is higher than the first season, therefore restriction on including high water consuming crops in the second season would be the best choice in the cropping pattern.
A Shaabani, A Kamgar Haghighi, A Spaskhah, Y Emami, T Honar,
Volume 13, Issue 49 (10-2009)
Abstract

Oil seed rape (Brasica napus) is an important crop, which is cultivated in Iran for oil production. As a management practice deficit irrigation strategy is applied to cope with water shortages, especially during drought periods. This research was conducted to study the effect of water stress on physiological parameter of oil seed rape in the experimental research field of Collage of Agriculture (of shiraz university) during 2004- 2005 and 2005- 2006. Licord cultivar of oil seed rape was planted and experimental design was random block with five treatments and four replications. Treatments were full irrigation in all growth stages, water stress in vegetative stage in early spring, water stress in flowering and podding stages, water stress in grain filling stage and dry land treatment with supplemental irrigation in time of planting. Water stress caused decrease in water potential of plant, an increase in canopy temperature, and decrease in plant height especially in dry land treatment. Leaf area index decreased as water stress increased. The decrease in leaf area index was more severe in vegetative stage water stress treatment. At the end of water stress period leaf area index increased again. Rate of decrease in leaf area index at the end of the growing season was higher in grain filling stage of water stress treatment.
M. Karimi Kakhaki , A. Sepehri,
Volume 13, Issue 50 (1-2010)
Abstract

In order to study the effect of deficit irrigation at reproductive growth stages on water use efficiency and drought tolerance of four sunflower cultivars, including Azargol, Allstar, Alison and Euroflor, an experiment was conducted during 2007 growing season at experimental field of Agricultural Faculty of Bu-Ali Sina University, Hamadan, Iran. The experiment was a split plot based on randomized complete block design with three replications. The irrigation levels included full irrigation, deficit irrigation at heading, deficit irrigation at flowering, deficit irrigation at seed filling, deficit irrigation at heading and seed filling and deficit irrigation at flowering and seed filling stages. The biological and economic yield (BY and EY), harvest index (HI), water used, water use efficiency (WUE) and water stress indexes were measured. The results indicated that the highest BY (11681.7 kg.ha-1), EY (4854.0 kg.ha-1) and HI (42%) were obtained from full irrigation treatment. The lowest negative effects in cultivars belonged to deficit irrigation at seed filling stage. Euroflor obtained the highest of these parameters with 10127.1 Kg.ha-1, 4081.5 Kg.ha-1 and 40% respectively. Highest WUE was related to twice cutoff of irrigation in flowering and seed formation stages and then without irrigation in seed formation stage by 1.09 and 0.96 Kg.m-3. Allstar and then Euroflor had highest WUE among sunflower cultivars by 1.01 and 0.94 Kg.m-3 respectively. Results also indicated that Euroflor was a tolerant cultivar and STI (Stress Tolerant Index) and GMP (Geometric Mean Productivity) were acceptable indexes for selection. Finally, deficit irrigation at seed formation stage had the lowest negative effect on yield and HI with suitable WUE. In addition, Euroflor showed the highest yield, drought tolerance and HI with suitable WUE.
M Sarai Tabrizi, H Babazadeh, M Parsinejad, S.a.m Modares Sanavi,
Volume 14, Issue 52 (7-2010)
Abstract

Deficit irrigation is one of the irrigation management methods that is used to increase Water Use Efficiency. Considering the internal plant adaptability characteristic to water shortage, Partial Root Drying method has been introduced in recent years. In this field research improvement of Water Use Efficiency for Soybean was determined. This experiment which was conducted at four furrow irrigation treatments at the Research Field of Tehran University in Karaj in 2008, consists of full irrigation (100% soil moisture deficit compensation), conventional deficit irrigation at 50 and 75 percent soil moisture deficit compensation and Partial Root Drying at 50 percent soil moisture deficit compensation with three replications. The amounts of irrigation used were exactly compensation level (negligible loss). Results indicated that Water Use Efficiency according to Duncan's Multiple Range Test at the five percent level of probability there was a significant difference between partial root drying treatment (PRD50%) and conventional deficit irrigation treatment at fifty percent soil moisture deficit compensation (DI50%),. Water Use Efficiency in PRD50% compared with DI50%, DI75% and full irrigation increased by 48.3%, 61.9% and 70.1% respectively.
M. H.nazarifar, R. Momeni,
Volume 15, Issue 56 (7-2011)
Abstract

Deficit irrigation is one of the strategies used to obtain products with maximum profits in recent years. In this context, research on determining appropriate levels of deficit irrigation is essential. Since determining the different levels of performance through field experiments is difficult, the use of simulation models is a strategy through which we can examine the water balance data, simulate the growth process, and to study different managerial scenarios. The purpose of this study was validation and evaluation of CropSyst, a plant growth model, to determine suitable cropping patterns in deficit irrigation conditions. Applying three deficit irrigation scenarios in model, with values of 10%, 20% and 30% on six crops, fava bean, bean, wheat, potato, sunflower and rice, we concluded that the applied deficit irrigation of 10% to bean, potato and beans, 20% to sunflower and 30% to wheat had been suitable, and it is better not to apply deficit irrigation in rice. Also, since in final selection, the rate of water productivity is one of the basic criteria in each crop mentioned above, determining net benefit based on drop index (NBPD) per cubic meter showed that the most NBPD is related to bean with 6853 Rials per cubic meters and the lowest amount is related to sunflower with a value equal to 2809 Rials per cubic meters.
A. Haghverdi, B. Ghahraman, M. Kafi, K. Davari ,
Volume 15, Issue 58 (3-2012)
Abstract

The objective of current study was to perform screening experiment, (phase zero of response surface methodology) the analysis of salinity and water tensions for spring wheat in Mashhad region and derive water production functions. The experiment was performed in the Research Field of Agricultural Faculty of Ferdowsi University of Mashhad in 2009-2010. Two water sources were selected: saline water (10 dS/m) and water without salinity limitation (0.5 dS/m). A single replicate factorial experiment with four variables and water requirements in different growth stages, was done with each variable having two levels, 20% and 100% of water requirements. The central points of experiment area with two replications were added for estimating the curvature in the fitted response surface. The results showed the water requirements in heading and flowering were the most important variables. The fitted water production functions estimated the yield of saline and non saline plots with correlation coefficients equalsing 0.95 and 0.99. In general, the obtained results proved the efficiency of the screening experiment in identifying the relative importance of variables and excluding the ineffective variables
J. Abedi Koupai, J. Khajeali, R. Soleimani, R. Mollaei,
Volume 18, Issue 67 (6-2014)
Abstract

As increasing of disaster such as drought and pest invasion in recent decades, it is essential to find out practical approaches in optimizing water use and water management for reduce the adverse effects of this disaster in agriculture. In order to study the effects of water stress and pest stress on corn yield, an experiment was conducted in the research farm of Isfahan University of Technology. In sprayed and non sprayed of the field, a factorial design, based on the completely randomized block, was carried out with three treatments of irrigation regimes including intensive stress (50% water requirement), moderate stress (75% water requirement) and no water stress in four stages of corn growth from seed germination until tasseling, from tasseling until milky, from milky until harvest and the whole period of corn growth, in four replications for one year (2005). The results showed that applying water stress on corn reduced seed yield between 6-62% and also decreased other agronomic characters except protein percentage. Water stress in non sprayed condition, reduced significantly more physiological characteristics of corn compared to the sprayed condition. Intensive water stress and pests stresses increasd 3 and 13% of percentage protein, respectively. In sprayed condition applying moderate stress in first stages of corn until the first of third stage is suggested in drought condition.
M. Noshadi, S. Jamshidi , F. Foroharfar,
Volume 19, Issue 74 (1-2016)
Abstract

Evaluation of pollutant transportation in soil is important from different environmental aspects such as soil and groundwater contamination. The purpose of this study is to measure 2, 4-D concentrations in a silty loam soil under two different treatments (normal and deficit irrigation) in a corn field and simulate the results using the PRZM-3 and LEACHP models. Total concentrations of 2, 4-D in the soil profile in 8, 13, 23, 30, 37, and 57 days after application for normal irrigation were 18.5, 16.36, 11.67, 10.47, 8.47 and 3.2 mg kg-1, respectively. For these dates, PRZM-3 model simulated 18.5, 16.36, 11.67, 10.47, 8.47 and 3.2 mg kg-1 of 2,4-D, respectively and LEACHP model simulated 23.34, 20.93, 16.7, 16.3, 12.9 and 11.41 mg kg-1 of 2, 4-D, respectively. Total concentrations of 2, 4-D in the mentioned dates for deficit irrigation were 20.2, 16.7, 11.22, 10.05, 8.8 and 7.3 mgkg-1, respectively. For these dates, PRZM-3 model simulation results were 21.9, 19.89, 14.2, 10.62, 9.6 and 8.22 mg kg-1, respectively and LEACHP model simulation results were 25.22, 21.3, 19.43, 18.58, 18 and 16.27 mg kg-1, respectively. The simulation results showed that performance of PRZM-3 model was better than LECHM model in both treatments. In this research, the half-lives of 2, 4-D for 0-10 cm and 10-20 cm of soil depth were 7 and 33 days in a normal irrigation, and 9 and 34.65 days in a deficit irrigation, respectively.


H. Sharifan, S. Jamali, F. Sajadi,
Volume 22, Issue 2 (9-2018)
Abstract

In order to study the effects of different irrigation regimes and different levels of salinity on the growth parameters of Quinoa (Chenopodium quinoa Willd.), this experiment was performed in the research green house of Water Engineering Department, at f Gorgan University of Agricultural Sciences and Natural Resources, during 2016. The experimental design was a factorial with n a randomized complete design in three replications. Treatments included three irrigation levels (100, 75 and 50 percent of water requirements calculated by the evaporation pan class A) and five salinity levels (0.5, 4.3, 8, 11.8, 16 dSm-1). The results showed that the effect of irrigation on the Leaf area index, chlorophylls and RWC (P<0.01) and Leaf length, and width (P<0.05) was significant. The effect of salinity levels on the Leaf area index, chlorophylls, Leaf length and width, RWC, Specific leaf weight (P<0.01) and Leaf petiole length (P<0.05) was significant too. The interaction between irrigation and salinity levels on chlorophylls and RWC (P<0.01) and Leaf width (P<0.05) was significant as well. According to the results, Quinoa had a good tolerance to the elevated levels of deficit irrigation. Decreasing the irrigation levels from 100 to 50 percent of pan evaporation resulted in the reduction of the Leaf area index and RWC to 24.6 and 7.3 percent, respectively. The result also showed that Quinoa had a good tolerance to the elevated levels of salinity, the mixing sea water, and tap water at rate of 30 percent, with control treatment having no significance for all of the parameters. It seems that good stand establishment in the saline soils and water conditions could be insured if proper management is applied in the farms.

A. Shabani,
Volume 23, Issue 2 (9-2019)
Abstract

Shortage of irrigation water is a major problem constraining in agricultural production in arid and semi-arid regions. Deficit irrigation is one way to cope with water scarcity and increase water use efficiency. Determining the optimum applied water based on economic analysis is a major key to the deficit irrigation strategy. In this study, the required equations were derived to determine the optimum applied water for sugar beet when crop price is a function of the applied water. The results showed that the optimum applied water under land limiting conditions (144.98 cm) resulted in the maximum net benefit per unit area (2089741 Rials ha-1). Applying the optimum water depth under land limiting resulted in 17.48% decrease in the applied water and 15.05% increase in the total net benefit, in comparison with the maximum yield condition. In water limiting conditions (land is not limiting), the total net benefit was maximized by applying the saved water to put larger areas of land under irrigation. Applying the optimum water depth under water limit condition resulted in 31.2% decrease in applied water and 45 and 52.36% increase in the planting area and the total net benefit, in comparison with the maximum yield condition, respectively. Sugar beet planting can be, therefore, profitable if the applied water depth is greater than 67.53 cm in this study area.

M. Mokari, H. Dehghan, M. Taherian,
Volume 23, Issue 4 (2-2020)
Abstract

In order to investigate the effect of new deficit irrigation strategies on the quantitative characteristics and water productivity of two field grown corn cultivars, a split plot experiment was conducted as a randomized design in three replications. The irrigation treatments included full irrigation treatment (FI), static deficit irrigation (SDI), dynamic deficit irrigation (DDI), static partial root zone drying irrigation (SPRD), which received 75% of ET during the growth period, dynamic partial root zone drying irrigation (DPRD), which received 90% of ET in the first one- third of the growth period, 75% of ET in the second one- third of growth period, and 50% of ET in the last one- third of the growth period. The results showed that there were significant differences between irrigation strategies. The SDI, DDI, SPRD and DPRD irrigation treatments decreased the corn yield by 18%, 27%, 49% and 53%, as compared to FI, respectively. The results also showed that there were no significant differences between cultivars. Compared to FI, the SDI increased WP by 14%, but DDI, SPRD and DPRD decreased WP by 3%, 19% and 44%, respectively. According to economic analysis, irrigation optimum depth for the maximum net profit was obtained to be 858.5 mm. In general, the SDI strategy is recommended in the study area.

A. Rigi Karvandri, A. Mehraban, H. R. Ganjali, Kh. Miri, H. R Mobser,
Volume 23, Issue 4 (2-2020)
Abstract

Water scarcity is the most important factor constraining agricultural production all over the world and water shortage in agriculture must be established to use the deficit irrigation. In order to study the effects of the regulated deficit irrigation and partial root zone drying on the growth traits of Rosmarinus Officinalis L., an experiment was conducted in the center of seed and plant production of IranShahr municipality in 2017. The experiment treatments were arranged as a randomized complete block design with three replications. The irrigation regimes consisted of full irrigation, regulated deficit (RDI75 and RDI55) and partial root zone drying irrigation (PRD75 and PRD55). The results showed that deficit irrigation at 75 and 55 percent of full irrigation resulted in saving 18.6 and 34.3 percent of water consumption, respectively. Comparison of full irrigation and PRD75 showed that dry weight, height of plants and number of shoots per plant were decreased by 6.7, 14.3 and 12.1 percent, respectively. However, proper development of root in PRD75 increased 12.9 percent of water productivity. Therefore, by considering the problems of water scarcity, it is possible to provide PRD75 as a superior treatment and a suitable strategy to cope with the water crisis in order to move towards a sustainable agricultural system.

M. Tavangar, H. R. Eshghizadeh, M. Gheysari,
Volume 24, Issue 2 (7-2020)
Abstract

The present study aimed to evaluate the growth and water use efficiencies of eight late-maturing corn hybrids in comparison to the common use of KSC704 and Maxima-FAO530 under different water-nitrogen management systems. Two irrigation regimes (based on 50% soil-water depletion as the normal irrigation and, on average. 16% less than normal as the deficit irrigation) and two nitrogen (N) application managements (3 and 16 split-application of 150 kg N from Urea, 45% N) were induced using the split-split plot experiment based on a completely randomized block design with four replications at Research Field of Isfahan University of Technology on 2017. The results showed that yield, forage and leaf area index were significantly (P<0.01) affected by the interaction of three studied factors (Irrigation × Nitrogen × Corn hybrid). For different corn hybrids, more water use efficiencies were achieved by deficit-irrigation regime and 16- split-applyication of N; in this regard, the SC719 hybrid had the highest value of 3.45 kg m-3. Generally, the performances of the studied late maturing corn hybrids were higher than those of the control hybrids of SC704 and SC530 at this planting date, which could be improved by using the deficit-irrigation regime and more split-application of the N fertilizer.

M. Askari, A. A. Kamgar-Haghighi, A. R. Sepaskhah, F. Razzaghi, M. Rakhshandehroo,
Volume 24, Issue 3 (11-2020)
Abstract

In the present study, the effects of different levels of irrigation, organic mulch and planting method on the mungbean yield in Badjgah were investigated. The experimental plan in the first year was full randomized block, while in the second year, it was full randomized split-split plot block design, in three repetitions. The results showed that in the FI treatments, the yield was increased up to 2% for the first year and 5% for the second year by changing the planting method from on over-ridge planting method to the in-furrow planting one. Also, the results of the first year showed that there was no significant difference between the yield in the fully-irrigated treatments without mulch and the treatment with mulch and 0.75 FI. The amount of the irrigation water could be decreased up to 25% by adding organic mulch in both planting methods, as compared to the fully-irrigated treatments without mulch. The maximum water productivity equal to 0.4 kg/m3 was observed in 0.5 FI, in-furrow planting method with mulch treatment. It can be, therefore, concluded that the water productivity may be maximized with the application of both deficit irrigation and mulching strategies.

A. Mehrabi, M. Heidar Pour, H. R. Safavi,
Volume 25, Issue 4 (3-2022)
Abstract

Designing an optimal crop pattern and on-time water allocation of water resources along with deficit irrigation are among the optimal solutions to maximize the water economic efficiency index. In this paper, the simultaneous optimization of crop pattern and water allocation are discussed using the deficit irrigation method. The study area is located west of the Qazvin plain irrigation network. The six different levels of percentage reduction of irrigation rate (0, 0 to 10, 0 to 20, 0 to 30, 0 to 40, and 0 to 50%) in three climatic conditions consist of dry, normal, and wet years were compared. The best irrigation scenario was selected for each year, and the results were compared with the existing crop pattern of the same year. The new crop pattern included the main crops of the region and the addition of rapeseed. The objective was to reach the maximum net benefit per unit volume of water by considering the maximum extraction of monthly and annual surface and groundwater. The results showed that the best scenario in the dry year was maximum deficit irrigation up to 20%, in a normal year full irrigation, and a wet year maximum deficit irrigation up to 10%. The improvement of economic water productivity in a dry year was 52.2%, in a normal year 41.5%, and in a wet year is 19.6% compared to the existing crop pattern. The average percentage of annual irrigation supply increases from 64.3 to 91.7% in a dry year, from 70 to 100% in a normal year, and from 77.5 to 97.1% in a wet year. Also, the relative yield of all crops, especially wheat, alfalfa, and sugar beet significantly increases. Therefore, the gravitational search algorithm as an optimization model can be considered in selecting the suitable crop pattern and allocation of surface and groundwater resources concerning economic benefits in irrigation networks management.

S. Jamali, H. Banejad, A. Safarizadehsani, B. Hadi,
Volume 26, Issue 1 (5-2022)
Abstract

This research was conducted to study the effect of deficit irrigation and saline water on yield and yield components of Peppermint in the experimental research greenhouse of Ferdowsi University of Mashhad from 2018 to 2019. This research was performed as a factorial experiment based on the randomized complete design with three replications. In this research, irrigation levels consist of 4 levels (100 (I1), 80 (I2), 70 (I3), and 55 (I4) percent of FC) and saline water factors consist of 4 levels (0.9 (EC1), 1.9 (EC2), 2.5 (EC3), and 3.4 dSm-1 (EC4)). The result showed that a decrease of the water to 15, 30, and 45 percent have resulted in the reduction of shoot fresh weights (to 15.8, 28.4, and 30.1 percent), shoot dry weights (to 7.1, 11.5, and 11.5 percent), and root dry weights (to 4.6, 9.2, and 9.2 percent), respectively. Also, results showed that irrigation with EC2, EC3, and EC4 has resulted in a decrease in shoot fresh weights (to 12.7, 28.5, and 34.0 percent), shoot dry weights (to 3.6, 11.6, and 11.6 percent), and root dry weights (to 6.7, 12.4, and 14.6 percent), respectively. The result indicated that interaction effects of salinity and water stress decreased peppermint water productivity, as the highest and lowest peppermint water productivity with 3.54 and 2.06 Kgm-3 were in the EC1I4 and EC3I1 treatments, respectively. Results revoluted that maximum dry yield and peppermint water productivity were in the EC1I4, so this treatment was recommended for irrigation of peppermint.

M.r. Bahadori, F. Razzaghi, A.r. Sepaskhah,
Volume 26, Issue 3 (12-2022)
Abstract

Inefficient use of limited water resources, along with increasing population and increasing water demand for food production has severely threatened agricultural water resources. One way to overcome this problem is to improve water productivity by introducing new crops that tolerate water stresses such as quinoa. In this study, the effect of water stress at different stages of plant growth (vegetative, flowering, and grain filling) was studied on plant parameters, yield, and water productivity of quinoa (cv. Titicaca). This study was conducted under field conditions and the treatments were performed as a block experiment in a completely randomized design with four replications. Experimental factors were: treatment without water stress or full irrigation (F) and water stress treatment (D) at 50% of the need for full irrigation at different stages of quinoa growth. The application of deficit irrigation during different stages of plant growth decreased stomatal conductance, leaf area index, leaf water potential, seed yield, and water productivity, while deficit irrigation increased the green canopy temperature. According to the results of the present study, the flowering stage of quinoa was very sensitive to water stress leading to produce lower yield compared with the amount of yield obtained when vegetative and or grain filling stages are under water stress conditions.

F. Meskini-Vishkaee, A. Tafteh, M. Goosheh,
Volume 27, Issue 1 (5-2023)
Abstract

Salinity and water scarcity are limiting factors for sustainable agricultural production. The cultivation of resistant plants to environmental stresses is one of the important management factors for sustainable production. The objective of this study was to determine the water requirement and plant response coefficients to water deficit stress (Ky) in different growth stages under the Khuzestan province climate. This study was performed on the quinoa cultivar Titicaca in Ahvaz City in 2019 in a randomized complete block design with 13 treatments and three replications. Treatments include full irrigation and application of three levels of water deficit stress (30, 50, and 70% of allowable soil moisture depletion) at four different stages of plant growth. The duration of the initial, developmental, middle, and late growth stages of quinoa was 24, 28, 32, and 18 days, respectively (total growth period=102 days). The highest quinoa yield was obtained in full irrigation treatment (3700 kg ha-1) with a water requirement of 312 mm. Plant response coefficient to water deficit stress in the initial, developmental, middle, and late stages were 0.8, 0.65, 0.74, and 0.47, respectively. Although quinoa is a drought-resistance plant, it should be noted that the water stress in the two initial and middle stages (quinoa sensitive growth stages to water stress) reduces the quinoa yield significantly that should be considered in the planning of deficit irrigation.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb