Search published articles


Showing 5 results for Earth Dam

S. M. A. Zomorodian, M. Khoshkoo,
Volume 16, Issue 61 (10-2012)
Abstract

Internal erosion is the second major reason for earth dam's failure after overtopping. One of the effective factors in internal erosion in earth dams is the clay minerals used in dams as well as the effects of compaction efforts on soil in sample preparation. In this research, internal erosion and the effect of clay minerals and compaction effort on internal erosion were investigated. For this purpose, Kaolin clay and Na Montmorillonite (Bentonite) separately and with different percentages of mixture were used to investigate the effect of different percentages of Bentonite on internal erosion. Two hammers of standard compaction and modified compaction test were also used to investigate different compaction efforts in internal erosion. The results showed that as compaction effort increased in constant water content, erodibility also increased to about 3%. In addition, it is found that erodibility of kaolin clay is more than bentonite, which reaches 65%. Finally, by adding 12% bentonite to kaolinite, erodibility decreased to a great extent.
M. Pakmanesh, H. Mousavi Jahromi, A. Khosrojerdi, H. Hassanpour Darvishi, Hossein Babazadeh,
Volume 25, Issue 3 (12-2021)
Abstract

The present study is investigated the earth dam stability during drawdown based on both numerical and experimental aspects. To validate the numerical model, a model was performed experimentally. Some soil mechanic tests were carried out through the hydraulic experiments to attain the usage factors of the numerical investigation. To investigate the effect of hydraulic conductivity on the rapid drop of water level and the use of hydraulic parameters of materials, seepage flow in the model was modeled by seep/w software. The input information to the software including hydraulic conductivity and water volume were measured by performing a constant load test and using a disc penetration meter, respectively. After validation of hydraulic conductivity with the experimental model, the results were compared with observed data. Comparison between numerical and laboratory discharge illustrated that the numerical model with laboratory model is well confirmed. In addition, saturated and unsaturated simulations demonstrated that the unsaturated model is highly consistent with the experimental model. It is assumed that due to the drawdown conditions, unsaturated models can achieve high accuracy for simulating the flow through a homogeneous earth dam.

S. Salehi, A.r Esmaili, K. Esmaili,
Volume 25, Issue 4 (3-2022)
Abstract

The objective of this study was to investigate how the earth dam is destroyed due to the effect of upstream and downstream slope of the body in overflow conditions. Therefore, eight models were provided that each model is constructed from the embankment dam with different upstream and downstream slopes (1:1, 2:1) and the soil properties (Sc) on breach formation. The time and method of dam break for flood discharges were investigated. The results showed that the upstream side slope of the embankment dam has less effect than the downstream side slope on the scour process resulting from the phenomenon and by increasing the downstream side slope of the embankment dam, the amount of erosion in the scour hole increases 28 %. Then, using nonlinear regression, relationships were presented to estimate the output flow rate and the location of the waterfall. A to the erosion and formation of the waterfall inside the body of sticky earth dams, two main outlines of the great waterfall and a series of waterfalls were presented. Finally, the formation of these waterfalls due to the effect of shear stress created during sediment erosion relative to the critical shear stress of the dam constituents was investigated and evaluated. Considering the limitations based on shear stress, the formation status of the type and the leaching pattern of the body of the cohesive earth dams during the overpass were estimated. Then, a general plan was presented to predict the behavior of the overflow stream in homogeneous and sticky soil.

H. Hakimi Khansar, A. Hosseinzadeh Dalir, J. Parsa, J. Shiri,
Volume 26, Issue 2 (9-2022)
Abstract

Accurate prediction of pore water pressure in the body of earth dams during construction with accurate methods is one of the most important components in managing the stability of earth dams. The main objective of this research is to develop hybrid models based on fuzzy neural inference systems and meta-heuristic optimization algorithms. In this regard, the fuzzy neural inference system and optimizing meta-heuristic algorithms including genetic algorithms (GA), particle swarm optimization algorithm (PSO), differential evolution algorithm (DE), ant colony optimization algorithm (ACOR), harmony search algorithm (HS), imperialist competitive algorithm (ICA), firefly algorithm (FA), and grey wolf optimizer algorithm (GWO) were used to improve training system. Three features including fill level, dam construction time, and reservoir level (dewatering) obtained from the dam instrumentation were selected as the inputs of hybrid models. The results showed that the hybrid model of the genetic algorithm in the test period had the best performance compared to other optimization algorithms with values of R2, RMSE, NRMSE, and MAE equal to 0.9540, 0.0866, 0.1232, and 0.0345, respectively. Also, ANFIS-GA, ANFIS-PSO, ANFIS-ICA, and ANFIS-HS hybrid algorithms performed better than ANFIS-GWO, ANFIS-FA, ANFIS-ACORE, and ANFIS-DE in improving ANFIS network training and predicting pore water pressure in the body earthen dams at the time of construction.

H. Azadbeygi, M. Najarchi, Dr H. Lajevardi,
Volume 27, Issue 4 (12-2023)
Abstract

The present research explores the experimental and numerical investigation of homogeneous earth dams in rapid drawdown conditions. The numerical model was evaluated and calibrated due to the saturation status using the experimental model. The calculated error between the piezometric pressure data and the seepage line in the numerical and experimental model indicated that the results of the Seep/W numerical model data had acceptable accuracy. Also, to determine the thickness of the filter adjusted in the upstream side slope of the homogeneous earth dam in rapid drawdown condition, input data to the numerical model including hydraulic conductivity, rate of the water level drop (depletion of the dam reservoir in three scenarios of 2, 3, and 4 days), the different side slopes of the body (m = 1, 2, and 3), and the thickness of the filter layers were determined. It is worth mentioning that the number of layers and the soil properties of the filter materials were determined based on the USBR which consisted of three types of soil structure (sand, gravel, and gravel with sand). The maximum hydraulic gradient of the dam materials was used to estimate the thickness of the filter layers. Finally, some dimensional fewer numbers were presented to estimate the filter layers by changing the input data through the numerical model to attain the safe conditions for the values of the hydraulic gradient at the upstream side slope. Results of the numerical model indicated that for the construction of the dam with the thickness of the presented filter, the values of the available hydraulic gradient at the point of water exit from the upstream side slope of the body of the earth dam were lower than the critical hydraulic gradient of the earth dam materials in rapid drawdown condition.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb