Search published articles


Showing 62 results for Erosion

Sayed-Farhad Mousavi, Ahmad Mohammad-Zadeh, Ahmad Jalalian, Hossein Samadi-Boroujeni,
Volume 1, Issue 2 (10-1997)
Abstract

One of the most vital problems in the storage and utilization of surface waters for drinking, flood control, hydropower, and agricultural purposes is that of sedimentation in reservoirs and subsequent decline of dam lifetime. The useful lifetime of a dam is defined as the time necessary for approximately 80% of the volume of its initial capacity to be filled by sediments washed in by water. It is a function of the volume of the incoming sediments, specific weight of sediments, and reservoir trap efficiency. Trap efficiency depends on sediment characteristics, life, shape, and rule curves of the reservoir as well as on the capacity-inflow ratio. It is the purpose of the present study to calculate sediment trap efficiency of small dams and also to determine the relationship(s) among the effective parameters in the Chaharmahal and Bakhtiary region. For our purposes, 14 small earth dams (with heights of less than 15 m and capacities of about 1 MCM) were selected around Shahrekord and Borougen. Since no data were available on the erosion and sedimentation for these dams, the MPSIAC empirical model was used to estimate the incoming sediment to the dams' reservoirs. The model considers nine factors effective on erosion and sediment production in each watershed. These factors were analyzed for the watershed of each dam under study and the annual sediment yield was calculated. The amount of sediments retained in the reservoirs as a result of the working life of the dams was estimated by reservoir surveying. The trap efficiency was calculated for all the reservoirs under study. The results obtained revealed that the trap efficiencies for these small dams ranged from 10.4 to 68.9%. New curves were developed and suggested for the trap efficiency of small dams based on these results.
H. R. Karimzadeh, A. Jalalian,
Volume 6, Issue 3 (10-2002)
Abstract

For the study of field wind erosion and the design and evaluation of wind erosion control techniques, detailed observations of soil particle transport and vertical destribution of eroded soil particles are needed. The objectives of this study were: 1) To describe one device for soil transport particle measurement, i. e. the BSNE sediment catcher and 2) To assess vertical distribution of wind–eroded sediment with height in eastern Isfahan. The BSNE sediment catcher is a wind erosion sampler that traps eroded material at seven heights of 0.24, 0.60, 1.08, 2.00, 3.00, and 4.00 m above the soil surface. Each trap consists of a steel container with an inlet and outlet, mounted on a wind vane that rotates about a central pole. Before using the sampler in the field, it was tested and calibrated in the wind tunnel. The results showed that the average trapping efficiency with speeds ranging from 5.2 to 7.2 m sec-1 for 4 different wind–eroded sediments was 0.44 to 0.68. However the trapping efficiency depended on wind speed, particle size distribution, particle density and type of sediment. The sampler had the lowest efficiency for particles < 44 μm. A BSNE sediment catcher was installed in Babaii Air Base. After a sampling period, the sediment in each trap was collected and weighed. The trapped materials were a mixture of saltation and suspension particles. Vertical distribution of wind–eroded sediment showed that the amount of soil collected decreased with increased height and the percentage of fine particles (<63μm) increased with height. The amount of trapped materials for each cm2 frontal intake with increased height were 12.00, 3.42, 1.44, 1.56, 0.75, 0.21, and 0.39 g cm-2, respectively, for the one sampling period.
M. Sheklabadi, H. Khademi, A. H. Charkhabi,
Volume 7, Issue 2 (7-2003)
Abstract

Soil erodibility in arid regions, particularly in less developed soils, greatly depends on parent material. The objectives of this study included comparison of the potential of runoff and sediment production in soils with different parent materials and identification of the highly sensitive parent materials in Golabad watershed, 60 km northeast of Isfahan, with about 160 mm of annual precipitation and various geological formations, as one of the highly erodible watersheds in Iran. Soils formed on twelve different parent materials were selected. Rainfall simulator was run for 80 minutes on three replicates of each soil. To have an idea about the rate of runoff and sediment generation with time, runoff loaded with sediment was collected every 10 minutes using plastic containers. After measuring the volume of each runoff sample, it was dried and the amount of sediment was measured. The mechanical parameters of the applied rain were: intensity about 40 mm/hr, rain drop average diameter: 6.56 mm plot size: 1 m2 and kinetic energy of 13.7-17.2 J/m2.mm. Based on the rainfall simulation experiments, soils formed on green andesite and slightly dissected alluvium derived from both sedimentary and igneous rocks created the highest amount of runoff. They also created runoff much more rapidly as compared to other soils. In contrast, soils developed on granodiorite and moderately undulating alluvium produced the least volume of runoff. Furthermore, maximum quantity of sediment was produced from the soils occurring on green andesite and shale. The least sediment yield was observed in soils developed on granodirite and moderately undulating alluvium. Soils formed on shale created the highest sediment concentration and no significant differences were observed among other soils. Based on the results obtained, soils were ranked according to sensitivity to erosion. It is concluded that soil parent materials have a high influence on the production of runoff and sediment yield in Golabad watershed.
S. Rastgoo, B. Ghahraman, H. Sanei Nejad, K. Davary, S. R. Khodashenas,
Volume 10, Issue 1 (4-2006)
Abstract

This research is aimed to predict erosion and sedimentation of Tang-e-Kenesht basin in Kermanshah province using MPSIAC and EPM models in GIS software. This basin has about 14348 hectare area. This region has various vegetation, geology and soil texture and land use types. The basin has divided into 9 sub-basins and its maximum and minimum elevations are 3300 and 1400 m, respectively. Needed data were collected in part through published reports, while the remainings were derived by field survey. Necessary maps in MPSIAC and EPM models were prepared in Autocad-2000 medium and were transported to Arc-Info, after some revisions to them. After constructing topologies for all polygons, we entered all layers weights in Arc-View software. Combinations of all layers were managed thereafter. Nine layers for MPSIAC model and three layers for EPM model were combined to result the final layer of erosion and sedimentation. Basin erosion was calculated as 1002.7 and 1739.2 m3/Km2 by MPSIAC and EPM models, respectively. The result for basin sediment was 521.7 and 307.8 m3/Km2, respectively. Thereafter, medium and high erosion classes were found for the two models under study, respectively. Due to not fully compatible tables for EPM model and its subjective nature, one can conclude that MPSIAC model may have better performance.
F. Iranmanesh, A. H. Charkhabi, N. Jalali,
Volume 10, Issue 1 (4-2006)
Abstract

Dasht Yari plain is nearly 580,000 hectares which is under engraving gully erosion and unfortunately the gully development rate is increased in the recent decades. Satellite images may provide quick, extensive, and valuable information for the interpretation of morphometric characterstics of gully erosion expansion due to having attributes such as time series, relatively low cost, large coverage, and finally being capable of digital analysis. Therefore, this research was initiated to use these possible capabilities to find a quick and cost effective method to determine the morphometric characteristics of gullies with use of the Landsat ETM+ digital data of Dasht Yari plain in Chabahar county in southeast of Iran. The Landsat 7 data of 2001 and the field data collected from 25 selected gullies from the same area were used as control in this study. After geometric and haze corrections with use of spectral enhancement methods such as linear enhancement and color composites, the images were made ready for visual interpretation and selection field sites for the subsequent field sampling. On the selected 25 gullies, the field data collection including width, length, and height of gullies at 25%, 50%, and 75% cross sections was performed. At the end of the image processing, with use of image interpretation techniques such filtering, fusion and principal component analysis (PCA), morphometric characteristics of the gullies was computed and compared with the field data. Mean comparison and F and t-student tests were used to verify any statistical differences between two set of the data. The results showed that the data set were different at 1 and 5 percent levels. From the image processing methods, the PCA method had the smallest difference with the field collected data. Therefore, we may conclude that PCA method may be used for monitoring the gully expansion in the Dashat Yari plain and similar plains in the southeast of Iran.
Kh. Jalili, S. H. R. Sadeghi, D. Nikkami,
Volume 10, Issue 4 (1-2007)
Abstract

Improper management of watershed land utilization has many ill effects on the available resources. Land use optimization is one of the proper strategies to achieve sustainable development and to reduce resource dissipation. Focusing on Brimvand watershed in Kermanshah province which comprises an area of 9572 ha, the present study was conducted to find out the most suitable land allocation to different land uses viz. garden, irrigated farming, dry farming and rangeland to achieve soil erosion minimization and benefit maximization. The soil erosion, net benefit and standard land capability maps were supposed as the inputs of the objective functions and to defined constraints. The multi-objective linear problem was then solved using simplex method with the help of ADBASE software package and ultimately the optimal solution was gained. Additionally, the results of the study revealed that the amount of soil erosion could reduce by 7.78% whereas the benefit increases at the rate of 118.62%, in case of implementation of optimal solution. The above mentioned optimization led to dry farming decrease and garden increase over that area. The results of sensitivity analysis also showed that objective functions were strongly susceptible to the variation of maximum constraint of irrigated farming and garden areas.
A. Esmaili Nameghi, A. Hassanli,
Volume 11, Issue 1 (4-2007)
Abstract

One of the simple methods for erosion control, flood mitigation and flood damage reduction in the streams is building the checkdams. The present study was carried out to evaluate the performance of checkdams, location across the streams in the retention of the fine sediments in Droudzan watershed in Southern Iran. For this purpose, a number of streams with many stabilized check dams which were more than 27 years old were selected. For each stream, three check dams (one at the far beginning (upstream), the second one at the middle and the third one at the far downstream) were selected. In each stream, a number of samples were taken from retained sediment behind the selected check dams and also original soil was taken from both sides of the same check dams. Laboratory analysis on the size of particles and also texture of soil and sediment samples showed that in general, soils taken from both sides of the check dams were finer than sediment behind the same check dams. Comparison of particle sizes showed in all streams except Joobkhaleh (with extensive tree coverage) the performance of the third check dams (far downstream) in fine sediment retention is much better than the second one (at the middle) and the second one is more effective than the first one (upstream). Comparison of sands, silt, and clay percentage of soil and sediment also showed that in all streams except Joobkhaleh the clay and silt percentage behind the third check dam is more than the second check dam and that of the second check dam is more than the third one (upstream). In the same way, results showed that the sand retained behind the first check dam, was more than the sand behind the second and first checkdams, respectively. Therefore, if the retention of the fine sediments is the main purpose of the check dam construction, it is recommended that they be built in the far downstream rather than in the upstream of waterways.
M. Yousefifard, A. Jalalian, H. Khademi,
Volume 11, Issue 40 (7-2007)
Abstract

Improper use of natural resources, especially soil, causes its degradation and severe soil erosion. Water erosion is an important factor causing soil degradation. Land use change of pasture would result in severe soil erosion mainly due to the reduction of vegetation cover and also surface soil disturbance. The objectives of this study were to estimate the amount of sediment, runoff and nutrient loss in four different land uses including a pasture with good vegetation cover (> 20%), a pasture with poor vegetation cover (< 10%), a currently being used dryland farm and a degraded dryland farm which is not used. Soil samples were taken from the depth of 0–10 cm in a completely randomized design with four replications. A rainfall simulator was run for two hours to estimate the amount of sediment, runoff and nutrient loss. Organic matter, total N, available P and distribution of particles size in soil and sediment were measured. The results showed that a very high degradation has occurred in the area mostly due to water erosion created as a result of overgrazing in pasture, susceptibility of geological formations and more importantly, the change of land use pasture to inefficient dryland farming. Maximum and minimum runoff was observed in the abandoned dry landfarm and pasture with good vegetation cover, respectively. Maximum sediment content was observed in dryland farm. Sediment content in dryland farm, abandoned dry landfarm and pasture with poor vegetation cover were 54.5, 21 and 10.4 times more than that in the pasture with good vegetation cover, respectively. Enrichment ratio (ER) of soil particles in sediment was highest for fine silt (2-5µm), followed by clay. A minimum of ER was obtained for sand fraction. Percentages of organic matter, total N and available P in sediment were higher in the first hour as compared to the second one. This is mainly due to the fact that fine particles are removed at the beginnings of the rainfall event. Total removal of these chemical factors was highest in dryland, intermediate in pasture with poor vegetation cover and abandoned dryland and lowest in pasture with good vegetation cover. In general, cultivation and disturbance of the pasture in the area land have caused a great decrease in soil quality and made the surface very sensitive to erosion.
A. Jalalian, M. Amirpour Robat, B. Ghorbani, S.h. Ayoubi,
Volume 11, Issue 42 (1-2008)
Abstract

  Soil erosion is one of the most threatening issues for crop production and environmental qualities, especially for soil and water resources. Appropriate knowledge about total soil loss and runoff is valuable in order to perform soil and water conservation practices in watersheds. EUROSEM, "a single event, dynamic and distributed model," was developed to simulate soil loss, sediment transportation and deposition by rill and interrill processes. This study was conducted to evaluate EUROSEM model in order to simulate soil loss and runoff in Sulijan sub-basin, which covered 20 ha, from Charmah-Bakhtari province. The sub-basin was divided in to 19 homogeneous elements using topographic, land use, plant cover, slope and channel properties throughout it. Soil, plant cover, land surface and climate characteristics were measured and evaluated by field observations and laboratory measurements. Actual soil loss and runoff for studied events were determined by direct measurement in the field. After sensitivity analysis, calibration and validation steps were carried out to simulate runoff and soil loss. The results of sensitivity analysis showed that the EUROSEM model for predicting runoff was more sensitive to hydraulic conductivity, capillary drive and initial soil moisture. On the other hand the model for predicting soil loss was more sensitive to Manning's coefficient and soil cohesion. The results showed that the EUROSEM model was able to simulate well the total runoff, peak of runoff discharge, total soil loss and time for the peak of soil loss discharge. But that could not simulate well the peak of soil loss discharge and time for the peak of runoff. Although it seems that EUROSEM is able to predict soil loss and runoff partially well in individual events, it is necessary to evaluate the efficiency of the models for different basins with varieties of soil, plant cover and climatic properties.


A. Mohammadi Torkashvand, D. Nikkami,
Volume 11, Issue 42 (1-2008)
Abstract

  Erosion features map is one of the basic maps in erosion and sediment studies considered important in watershed management programs. For preparing soil erosion features map (1:250000 scale), a study was conducted in Jajroud sub-basin of Tehran, Iran. Working unit maps were prepared from integrating: A) plant cover, geology and slope B) land-use, geology and slope C) land-use, rocks sensitivity to erosion and slope and D) land-use, rocks sensitivity to erosion and land units. Working unit maps obtained from integrating layers were compared with three other maps consisting of working units maps according to E) land units F) rocks sensitivity to erosion units and G) image photomorphic units. Erosion features intensities in 314 control points were controlled and erosion features ground truth map was prepared by Thiessen method and using satellite imagery. Erosion features map was crossed with different working unit maps. Results showed that D map was better than A, B and C maps with regard to economic considerations. Accuracy was 53.0 and 42.9% for methods of land unit and rock sensitivity which resulted in the maps not suitable for differentiating soil erosion features. Root Mean Squared Error of working units showed that the error of land unit and rock sensitivity methods was more than image interpretation and integrated layers methods. The highest coefficient of variation was related to land unit and rock sensitivity to erosion methods and was the least for image interpretation and integrated layers methods. The greatest precision, therefore, was related to image interpretation and integrated layers methods. In general, working unit map of image interpretation was the best method for preparing soil erosion features map.


S.f Mousavi, J Mohammadzadeh Habili, M Heidarpour,
Volume 12, Issue 46 (1-2009)
Abstract

After construction of a dam across a river, sediments settle behind the dam. It is important for dam designers to estimate the rate and distribution of sediments in the reservoir. In this study, the accuracy of area-increment and area-reduction empirical methods to predict the sediment distribution of Dez, Dorudzan and Shahid Abbaspour reservoirs is evaluated. The last measurement of sediment in these reservoirs was in 2003 (Dez), 2005 (Dorudzan) and 2005 (Shahid Abbaspour). The comparison between actual sediment distribution and predicted sediment distribution by using area-increment and area-reduction methods showed the maximum error at the depth of sediment behind the dam. At higher elevations, the error decreased and reached zero when the elevation was maximum. For Dorudzan reservoir, which has the least sediment volume (31 Mm3), the area-reduction method is less accurate, as compared to the area-increment method (81% vs. 37.5%). For Dez and Shahid Abbaspour reservoirs, where their sediment volume is high (608 and 737 Mm3, respectively), the error of the two methods is relatively equal (in Dez, 29% for both methods, and in Shahid Abbaspour, 22% for area-reduction and 25% for area-increment methods). After long-time sedimentation, the shape factor decreased and reservoir type of all three reservoirs changed to 2.
S.h Sadeghi, S.h Pourghasemi, M Mohamadi, H Agharazi,
Volume 12, Issue 46 (1-2009)
Abstract

The use of suitable empirical models for estimation of soil erosion and sediment yield is essential because of nonexistence or shortage of associated data in many watersheds. In the present study, the applicability of the USLE and its different versions Viz. MUSLE-S, AOF, MUSLT, MUSLE-E, USLE-M and AUSLE in estimation of storm-wise sediment yield from standard plots installed in dry farming, ploughed and rangeland treatments was evaluated. To conduct the study, the entire input data were collected from plots installed in three replicates in each treatment in Khosbijan Natural Resources Research Station in Arak Township. The models’ estimates were then compared with the observed sediment data for 12 storm events. Contrary to high correlation among different models’ estimates, the models used in estimation of measured sediment data were found inapplicable. However, significant relationship (r=94.4%) and non-significant relationship with correlation coefficients less than 50% were found between MUSLE-E, and MUSLE-S and MUSLE-E estimates and measured data in rangeland, dry farming and ploughed treatments, respectively.
M Bashiri Seghale, S.h.r Sadeghi, A.s Rangavar ,
Volume 14, Issue 52 (7-2010)
Abstract

Erosion plots are basically used for studying erosion processes and many related problems. However, the possibility to extend the results of experimental plots to surrounding watersheds is rarely taken into account. In the present study, an attempt was made to study on the accuracy of soil erosion plots in estimation of runoff and sediment yield from small watersheds. Towards this attempt, 12 experimental plots with length of 2, 5, 10, 15, 20 and 25 meter were installed on two north and south facing slopes in Sanganeh watershed, northeastern Razavi Khorasan Province with an area of ca. 1 ha. The performance of the plots in estimation of runoff and sediment was controlled by data collected at the main outlet associated with 12 storm events occurred during November 2006 to June 2007. The results showed that the accuracy of plot estimates on sediment and runoff improved while the plot length increased. The optimal length for estimation of sediment and runoff parameters was found to be equal to average slope length and more than 20m.
M. Rezaie Pasha, A. Kavian, Gh. Vahabzade,
Volume 15, Issue 58 (3-2012)
Abstract

As the first event in soil erosion, rain splash erosion causes movement of soil fragments. Splash is an important process in interrill erosion. The amount of soil particles detached from the surface is associated with soil and rain characteristics and may be affected by rainfall erosivity and soil erodibility. Therefore, in this study, splash erosion rate and its relation with some soil properties were studied. 120 soil samples were collected from three adjacent land uses including forest, rangeland and agriculture in two depths of 0-10 and10-20 cm in Kasilian Watershed. Soil samples were investigated under the experimental condition using splash cup and rainfall simulator. Results showed no significant differences between splash erosion in different land uses. Cultivated and rangeland soils were found to show a significantly lower organic matter (OM) by 59.93% and 33.62% in depth (0-10cm) and 33.33% and 25.59% in depth (10-20cm), respectively. We also found significance positive correlation between percent of silt and splash erosion rate in agriculture (r=0.69, p=0.018) and significance negative correlation between soil organic matter and splash erosion rate in rangeland (r=0.767, p=0.001) and significance positive correlation between K-USLE and splash erosion rate in agriculture (r=0.00, p=0.758).
S. M. A. Zomorodian, M. Khoshkoo,
Volume 16, Issue 61 (10-2012)
Abstract

Internal erosion is the second major reason for earth dam's failure after overtopping. One of the effective factors in internal erosion in earth dams is the clay minerals used in dams as well as the effects of compaction efforts on soil in sample preparation. In this research, internal erosion and the effect of clay minerals and compaction effort on internal erosion were investigated. For this purpose, Kaolin clay and Na Montmorillonite (Bentonite) separately and with different percentages of mixture were used to investigate the effect of different percentages of Bentonite on internal erosion. Two hammers of standard compaction and modified compaction test were also used to investigate different compaction efforts in internal erosion. The results showed that as compaction effort increased in constant water content, erodibility also increased to about 3%. In addition, it is found that erodibility of kaolin clay is more than bentonite, which reaches 65%. Finally, by adding 12% bentonite to kaolinite, erodibility decreased to a great extent.
A. Talebi, A. H. Charkhabi, H. R. Peyrowan, A. A. Hashemi, H. Mosaddegh,
Volume 16, Issue 62 (3-2013)
Abstract

The Marls are unstable sedimentary formations that contain chemical materials and destructive particles. Marls Erosion processes are very intensive, so different forms of erosion on the marls as badlands are of specific characteristics in marl lands. Hence, recognition of effective characteristics in marls erodibility is necessary to adopt corrective measures and methods. In this research, for assessing marls erodibility in Hablehroud watershed portable rain simulator was used. Runoff and sediment amounts were measured in each marl unit. Then effective Factors were identified using statistical parameters. Finally, by factor analysis we determined the relationship between marls chemical properties and sediment yield. Therefore, effective parameters of erosion and sediment yield were determined. Results showed sediment yield is decreased in gypsum marl, sandy marl, salt marl and limy marl. In addition, erosion and sediment yield are increased with increasing EC, Na, Cl, SAR and with decreasing TNV, HCO3
Hamzeh Saeidian, Hamid Reza Moradi,
Volume 17, Issue 64 (9-2013)
Abstract

The type and intensity of soil erosion in a region generally depend on climatic conditions, ups and downs, soil and land use. Of these, land use is most important. Using different systems of ploughing after unconscious and non-scientific change of land use affects soil physicochemical characteristics. This fact especially in marginal lands and mountainous regions is more visible. In order to investigate sensitivity to soil loss and erosion in various land uses of Aghajary deposits, part of Margha catchment with an area of 1609 hectares in Izeh city was selected. This was to determine the relationship between soil loss by rain simulator and some soil physicochemical characteristics like percentage of very fine sand, sand, clay, silt, pH, Ec, moisture, Calcium Carbonate and organic materials in different land uses. Then, sediment sampling in 7 points, three replicates and in various intensities of 0.75, 1 and 1.25 millimeters in minute in range, residential and agricultural land uses was done using rain simulator. In order to investigate effective factors in sediment production and erosion, samples of soil layers (in depth range of 0-20 cm meters) equal to the number of sediments were taken. For statistical analysis, EXCEL and SPSS 11.5 software were used. In total, the amount of runoff in residential land use was highest and in agriculture land use was lowest. The amount of sediment in agriculture land use was highest and in residential land use was lowest. Then, the most important factors in sediment yield were diagnosed by multi regression. The results showed that sediment yield and erodibility in land uses have meaningful differences in various intensities of precipitation. Regression models showed that in the production of sediment in various land uses, from among the measured factors, silt, sand very fine, lime, Ec, organic materials and pH had the greatest role. Sand percentage in the residential land use, and very fine sand and organic matter in agriculture land use had the most important role in sediment production. But in range land use, moisture percentage and pH had the biggest role in sediment production.
Sh. Yousofvand, M. Habibnejad, K. Soleimani, M. Rezaie Pasha,
Volume 17, Issue 65 (12-2013)
Abstract

Soil erodibility and gully erosion and their expansion occur under geological formation and soil characteristics. This study aims to find the rate of soil and formation effects on gully erosion in Seifabad watershed. To that end, aerial and field work were used together to determine the rate & expansion of 17 gullies in 12 years' period from 1997 to 2009. The soils were sampled for each gully in 50% interval distance with 0-30 cm horizontal surfaces and >30 cm depth. Some factors were estimated from the soil such as EC, PH, Silt, Clay, Sand & limeston percentages. Statistical analysis was done using SPSS 14 through non-parametric tests such as Kruskal-Wallis & Mann-Whitney. Spearman coefficient was used to investigate the relation between volume of gully & litological factors. The results showed a positive correlation at 1% level for the PH with the gully erodibility in surface soil, but for the depth of soil this relation belonged to the silt percentage, and sand showed a negative relation at 5%level with the volume of the gully sediments. Finally, there was no statistical relationship between geological formation and the sediment yield in gullies.
M. Zare, M. Soufi, M. Nejabat, L. Jokar,
Volume 18, Issue 67 (6-2014)
Abstract

Gully erosion and sedimentation have high priority in Fars Province due to the losses from destruction of lands, roads and civil structures. In the present study, in order to evaluate the threshold for the development and initiation of gully topography in Fars province, two regions were selected including Allamarvdasht, Lamerd and Fedagh, Larestan. 30 gullies were selected in each mentioned area. Morphometric parameters were measured and topography threshold was drawn. To evaluate the effect of measured parameters on topography threshold, each gully was clustered based on parameters and cluster analysis. To determine the effect of dominant hydrologycal processes on gully initiation and development, the multivariate analysis was employed using SPSS (version 14) software. Using the power relationship between watershed area and slope of each gully, the dominant hydrological processes in gully initiation and development were determined by means of Excel software and were compared with coefficients of foreign regional studies. The results showed that in the two studied regions, the most effective hydrologycal process was surface runoff. Results also demonstrated that in these regions changing the shape of upstream basin topography to circle and their expansion have increased the threshold of watershed topography of gully erosion. Increasing the sodium absorbtion ratio and removing the ground cover reduce the threshold of gully erosion topography. Increasing the depth of gullies and soil organic matters resulted in greater relative threshold of topography.
B. Khalili Moghadam, Z. Ghorbani, E. Shahbazi,
Volume 18, Issue 69 (12-2014)
Abstract

Salt with various kinds and contents is one of the most important factors affecting soil splash erosion rate. The aim of the present study was to evaluate various salinity and alkalinity levels on splash erosion rate and its components (upslope, down slope and total splash) in different slopes. A factorial experiment with three factors was conducted in a completely randomized design with three replications by a Multiple Splash Set (MSS). The treatments included splash erosion rate at 4 levels of salinity and alkalinity (EC: 2 dSm-1, SAR: 2، EC: 15, SAR: 24 ،EC: 56, SAR: 42، EC: 113, SAR: 47), two levels of rainfall intensity (2.5 and 3.5 mm.min-1) and 5% and 15% slope levels. The results showed that the organic carbon and mean weight diameter (MWD) decreased at higher levels of salinity and alkalinity. The effect of saline and sodic, slope and rainfall intensity levels on the splash erosion rate and its components was significant. Also, slope×saline and sodic, rainfall intensity×saline and sodic, slope×saline and sodic×rainfall intensity interaction treatment caused a significant increase in splash erosion rate and its components. It seems that splash erosion is increased in saline and sodic soils due to the reduction in OC and MWD



Page 1 from 4    
First
Previous
1
 

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb