Search published articles


Showing 11 results for Hydraulic Jump

M.h. Omid, M.esmaeeli Varaki,
Volume 9, Issue 2 (7-2005)
Abstract

خTo reduce the construction costs of stilling basins of hydraulic jump type is sometimes, novel geometries are sometimes used to adopt the basin to the upstream and downstream sections without any transition structures. Otherwise, any changes in the geometry of the basin would cause changes in the conditions and characteristics of the hydraulic jump. In this study, the effects of variation in both the side slopes and the diverging angle of a gradually expanding stilling basin with trapezoidal section on the jump condition were experimentally investigated. The experimental tests were conducted in a specially designed model for a wide range of side slopes and longitudinal divergences of the basin walls. The important parameters of the jump, such as the length, sequent depth and the rate of energy loss were computed and compared to those in the normal jumps. Tests were conducted for three different side slopes (0.5:1, 1:1, 1.5:1) and four diverging angle (3o , 5 o, 7o, 9o) with the straight jump in the rectangular section and in the wide scope of decsent numbers (from 3 to 9). The results indicate that any decrease in the side wall slopes for a particular angle of divergence would cause a reduction in the sequent depth and an increase in the jump length and energy loss compared to the rectangular section on the same angle of divergence. It is also found that the longitudinal divergence of the side walls for a particular side slope will increase the stability of the jump within the stilling basin. It will also cause a reduction in the sequent depth and the jump length as well as an increase in energy loss of the jump, when compared to the straight jumps in either rectangular or trapezoidal sections.
H. Hamidifar , M.h. Omid , J. Farhoudi ,
Volume 14, Issue 54 (1-2011)
Abstract

This paper presents the results of an analytical and experimental study on the characteristics of hydraulic jump in a triangular channel. The analytical consideration is based on the momentum conservation law for the upstream and downstream sections of the jump. The experiments were carried out in a triangular channel of glass side walls with the vertex angle of 94.4°. A wide range of discharge and inflow Froude number were used in the experiments for two different opening heights of the upstream sluice gate. The main characteristics of the jump such as the sequent depth ratio, relative energy dissipation and water surface profile were investigated and the results were compared with those of the rectangular sections. The results showed that the triangular section is more efficient to dissipate the inflow energy. The efficiency of jump in a triangular channel is about 12% more than a rectangular channel for the same condition. As a result, hydraulic jump in a triangular channel needs a smaller tail water depth for a given inflow jet height and Froude number. Also, empirical relations and graphs are presented to determine the characteristics of the jump in triangular sections
M. Toozandehjani, M. Kashefipour,
Volume 16, Issue 62 (3-2013)
Abstract

One of the usual ways to dissipate excess energy in the dam's downstream is hydraulic jump. Hydraulic jump is a rapidly varied flow, in which the flow conditions change from supercritical to sub-critical with a large amount of energy loss. In this research, a combination of two water jets in the form of overflow dam and underflow through a slot on the body of an ogee dam with the USBR standard was established in order to decrease the length and sequent depth in a hydraulic jump. In these experiments, the underflow from the slot was designed with three out passages of 0, 45, and 90 degrees in respect horizontal line. Six different discharge ratios were used for each slot and the effect of each experiment conditions on decreasing of the length and sequent depth of hydraulic jump was investigated. The results showed that the confluence of two jets with 45 degrees from the slot had the maximum effect on the reducing of the length of hydraulic jump and sequent depth, and when 26 percent of the total discharge passed through the slot as underflow, it caused the length of hydraulic jump to be reduced by 50 percent in comparison with the classic jump. This slot not only decreases the length and sequent depth of hydraulic jump but also the sediment behind the dam can be evacuated through it. Moreover, it increases the discharge coefficient.
N. Pourabdollah, T. Honar, R. Fatahi,
Volume 18, Issue 67 (6-2014)
Abstract

Most of researches related to hydraulic jump have been done on horizontal and rough beds, and little attempt has been made on rough beds with adverse slopes. The aim of this study was to investigate the influence of rough beds with adverse slope on hydraulic jump characteristics. The variations of energy loss in stilling basins with three adverse slopes and three different roughnesses were studied. Results showed that increase of roughness caused that relative depth of jump in stilling basins with rough bed and adverse slope decreased as compared to horizontal smooth beds. The experiments were performed on rough beds in different conditions where Froude number ranging between 4.9 and 7.8. Result showed that reduction of relative depth was about 31.15%. Results also showed that in such cases the relative energy losses are more than that for classic conditions.
A. Ahmadi, T. Honar,
Volume 18, Issue 70 (3-2015)
Abstract

One of the most important problems in the design of a stilling basin is determination of the exact location of the hydraulic jump or stabilization of the hydraulic jump. In the present study, the effects of different forms of end sills on hydraulic jump characteristics were studied. The experiments were carried out for three different forms of end sills, rectangular, square and stepped, with three heights in two distances and for Froude numbers in the range of 4.7-8.23. The results showed that the end sill with larger cross section (square and stepped) will have a greater effect on reducing sequent depths of hydraulic jump and increasing energy loss than narrow end sills. However, in this type of end sills, water fall and the risk of erosion at downstream is greater.


R. Khankhani Zorab, S. M. Kashefipour,
Volume 22, Issue 1 (6-2018)
Abstract

The purpose of this study was to evaluate two perforated sills in the stilling basin and their impact on characteristics of the hydraulic jump, such as the length of the roller of hydraulic jump, decrease in the secondary depth of the hydraulic jump, and the required tailwater depth. Also, the optimal distance of two perforated sills from the beginning of the stilling basin with a fixed height for the perforated sill and ratios of the opening of holes equal to 50% were determined. The experiments were carried out in the form of 48 tests for different discharges in the range of 47 to 145 lit/s and for Froude numbers in range of 3.6 to 11.2. The results of the experiments on two perforated sills showed that they could only reduce the length of the roller of the hydraulic jump to an acceptable level, with the distance between them providing the conditions to create a stable jump; also, the length of roller of jump was not decreased by reducing the distance between the sills. Also, they decreased the secondary depth of the forced hydraulic jump up to 27.8%, which was less than the secondary depth of the free hydraulic jump; the length of roller was up to 76.9 % less than the length of the roller of the free hydraulic jump for the Froude number of 11.2.

Z. Eshkou, A. Dehghani, A. Ahmadi,
Volume 23, Issue 3 (12-2019)
Abstract

Stilling basins have been used as an energy dissipater downstream of hydraulic structures. Dimensions of the stilling basins depends on hydraulic jump characteristics. In this research diverging hydraulic jump with an adverse slope using baffle blocks and an end sill have been studied experimentally and effect of diverging angle of the walls, adverse bed slope and baffle blocks on the hydraulic jump characteristics have been evaluated. Tests have been done for rectangular stilling basin with different bed slopes (0.025-0.05-0.075) and different diverging angle (3-5-9) degree and using baffle blocks. Discharge and Froude numbers considered to range from 39 to 81.7 lit/s and 4.44 to 8.56 respectively. Results have been indicated that the baffle blocks have been reduced sequent depth ratio and relative length of the jump 12% and 18% respectively (in comparison to diverging stilling basin with adverse slope without block). It was also found that baffle blocks and end sill could considerably improve the general condition and features of an expanding hydraulic jump with an adverse slope and could stabilize the position of this type and bi-stable situation of the flow.

N. Pourabdollah, J. Abedi Koupai, M. Heidarpour, M. Akbari,
Volume 25, Issue 4 (3-2022)
Abstract

In this study accuracy of the ANFIS and ANFIS-PSO models to estimate hydraulic jump characteristics including sequence depth ratio, the jump length, the roller length ratio, and relative energy loss was evaluated in stilling basin versus laboratory results. The mentioned characteristics were measured in the stilling basin with a rectangular cross-section with four different adverse slopes, four diameters of bed roughness, four heights of positive step, three Froude numbers, and four discharges. The average statistical parameters of NRMSE, CRM, and R2 for estimating hydraulic jump characteristics with the ANFIS model were 0.059, -0.001, and 0.989, respectively. While, the mean values of these parameters for the ANFIS-PSO model were 0.185, 0.002, and 0.957, respectively. The results indicated that these models were capable of estimating hydraulic jump parameters with high accuracy. However, the ANFIS model was moderately more accurate than the ANFIS-PSO model to estimate the sequence depth ratio, the jump length, the roller length ratio, and relative energy loss.

M. Majedi Asl, R. Daneshfaraz, J. Chabokpour, B. Ghorbani,
Volume 26, Issue 2 (9-2022)
Abstract

In the last decade, the use of gabion structures in hydraulic engineering for stabilizing the structure due to its high density and weight has become widespread. Also, the material's roughness and porosity cause it to be used in energy dissipation and drainage projects. This study evaluates the relative energy dissipation of gabion structures downstream of the ogee spillway in the conditions of a submerged hydraulic jump. The evaluated parameters in this study were Froude number, gabion height, gabion thickness, and material diameter. The experiments were performed with three average diameters of 1.5, 2.2, and 3 cm for rock material, three gabion heights of 10 and 20 cm, and Max. The end sill heights were 10, 20, and 30 cm. The operated discharges were regulated from 20 to 40 l/s. The results showed that by decreasing the average diameter of gabion aggregates, the amount of relative energy dissipation increases in all tested models, so that in gabion with a 1.5 cm average diameter of aggregates, the amount of energy dissipation increased by 3.6% in comparison with using the diameter of 3cm for the average diameter of the material. Increasing the height of the gabion to the extent that the flow is entirely inward can have up to 33% more relative energy dissipation than the gabion with a height of 10 cm. Also, by increasing the diameter of the gabion from 10 cm to 30 cm, relative energy dissipation increases up to 15%.

R. Daneshfaraz, M. Bagherzadeh, M. Jafari,
Volume 26, Issue 4 (3-2023)
Abstract

The present study aimed to investigate and compare the laboratory results of energy dissipation and length of vertical Drops equipped with horizontal Screens with the results of standard stilling basins of type one, two, three and four simple vertical Drops. For this purpose, 64 different experiments were performed on vertical Drops equipped with a horizontal Screen at relative distances of 0, 0.25, 0.5, and 0.75 from the edge of Drops, with a porosity of 40 and 50% of the Screen and a height of 20 cm .The results showed that in all experiments and at a constant flow, increasing the distance of the Screen from the edge of Drops does not have much affect the energy dissipation of the current. On average, the downstream energy dissipation for the present study has increased by more than 20% compared to the simple vertical Drop, which can be an excellent alternative to the downstream stilling basin. Among the models of the present study, the most significant reduction in the relative length of the Drops was achieved by the vertical Drops model with a horizontal Screen with a relative distance of 0.75. On average, when using horizontal Screen at four relative distances from the edge of Drops, the relative length of the Drops is reduced by more than 73% compared to the vertical Drops equipped with a standard stilling basin.

N. Pourabdollah, M. Heidarpour, Jahangir Abedi-Koupai,
Volume 27, Issue 3 (12-2023)
Abstract

Hydraulic jump is used for dissipation of kinetic energy downstream of hydraulic structures such as spillways, chutes, and gates. In the present study, the experimental measurements and numerical simulation of the free hydraulic jump by applying Flow-3D software in six different conditions of adverse slope, roughness, and positive step were compared. It should be noted that two turbulence models including k-ε and RNG were used for numerical simulation. Based on the results, simulation accuracy using the RNG model was more than the k-ε model. The statistical indices of NRMSE, ME, NS, and R2 for comparing the water surface profile were obtained at 34.3, 0.0052, 0.995, and 983 for the application of the RNG model, respectively. Also, using the RNG model, the values of these indices for the velocity profile were obtained at 14.92, 0.127, 0.9982, and 962, respectively. In general, the error of the simulated water surface and velocity profile were obtained at 5.31 and 12.4 percent, respectively. Moreover, the maximum error of the numerical simulation results of D2/D1, Lj/D2, and Lr/D1 was ±12, ±12, and 16%, respectively. Therefore, the use of Flow-3D software with the application of the RNG turbulence model is recommended for numerical simulation of the hydraulic jump in different situations.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb