Search published articles


Showing 7 results for Labyrinth Weir

M. Heidarour, S. F. Mousavi, A. R. Roushani Zarmehri,
Volume 10, Issue 3 (10-2006)
Abstract

Because of slight variation of the static head due to discharge fluctuations, the labyrinth weirs are considered to be economical structures for flood control and water level regulation in irrigation networks, as compared to other devices. Labyrinth weirs are composed of folded sections observed as trapezoidal and triangular in plan view. In this study, rectangular and U-shaped labyrinth weirs were investigated. Experiments were conducted on 15 labyrinth weir models. The models included eight rectangular labyrinth models and six U-shaped labyrinth models with different heights and lengths, and one linear model. All the experiments were performed in a horizontal rectangular flume, 7 m long, 0.32 m wide and 0.35 m high. The results indicated that for all the models, discharge coefficient increased sharply with an increase in Ht/P and attained a maximum value. This coefficient then decreased smoothly with a further increase in Ht/P. Increasing height of weirs increased the discharge coefficient for both rectangular and U-shaped weirs. The results also showed that increasing the length parallel to the flow direction decreased and increasing the length perpendicular to the flow direction increased the discharge coefficient. Generally, the discharge coefficient for rectangular weir was less than that of the U-shaped weir. The obtained results compared with those of Tullis et al. (1995) showed that discharge coefficient for U-shaped weir is more and for rectangular weir is less than that of the trapezoidal weir for angle of the side legs of 8 and 12 degrees.
M. Majedi Asl, M. Fuladipanah,
Volume 22, Issue 4 (3-2019)
Abstract

A labyrinth weir is a nonlinear weir folded in the plan-view which increases the crest length and the flow rate for a given channel width and an upstream flow depth. Nowadays, a labyrinth weir is an attractive alternative for those weirs that have a problem in passing the probable maximum flood. The three-dimensional flow pattern and unlimited geometric parameters provide a major challenge to the designers of these weirs. The present study aimed at determining discharge coefficients of sharp-crested triangular labyrinth weirs using the support vector machine (SVM). The results were compared with the experimental data. For this purpose, 123 laboratory test data including  geometric and hydraulic parameters such as vertex angle (θ), magnification ratio (L/B), head water ratio (h/w), Froude number (Fr), Weber Number (We) and Reynolds number (Re) were used. The results showed that the SVM-based model produced the most accurate results when only three geometric parameters, e.g. (h/w, θ, L/B), were introduced as the input parameters (R2 = 0.974, Root mean square error [RMSE] = 0.0118, mean absolute error [MAE] =0.0112 and mean normal error [MNE] =0.017 for the test stage). Also, for these weirs, polynomials linear and nonlinear regression equations were presented. Finally, the discharge coefficient of sharp-crested triangular labyrinth weirs based on the Rehbock equation was evaluated and compared with the SVM using nonlinear and linear regression methods.

H. Azarpeyvand, A. R. Emadi, M. Sedghi Asl,
Volume 23, Issue 1 (6-2019)
Abstract

Labyrinth weirs are the economic structures to increase the weir output efficiency in limited widths, which can be seen in the plane f trapezoidal and triangular forms. These weirs with a hydraulic load and fixed width pass the more discharge in comparison to other type of weirs. In this study, labyrinth weirs trapezoidal in plane form were investigated. The experiments were performed on 27 laboratory models with 9 different discharge rates and a total of 243 tests. The results showed that, in all of the composite trapezoidal labyrinth weirs, the ratio of discharge coefficient to Ht/p (Ht: Total hydraulic load and p: weir length) weir length was increased at first; after reaching the maximum rate, it started to decrease. According to the suggested general relation, the utmost impact on discharge coefficient resulted from the cycle number and  Ht/p relation. Creating new labyrinth on the wing of the weir led to the increase of the effective length; as a result of it, the discharge rate increased in a specific amount of Ht/p. Also, the discharge through a trapezoidal labyrinth weir with the semicircular planform was better than the square; the square, in turn, was better than the simple trapezoidal weirs.

R. Gharibvand, M. Heidarnejad, H. A. Kashkouli, H. Hasoonizadeh, A. Kmanbedast,
Volume 24, Issue 1 (5-2020)
Abstract

The flow fields over a trapezoidal labyrinth weir (two-cycle) and a piano key weir were simulated using Flow3D, studying the impact of each model on the flow field in the weirs and the coefficient of discharge in comparison with the available experimental data. Moreover, the models were investigated experimentally in a 12.5 m long, 0.3 m wide, and 0.4 m high rectangular flume under clear-water conditions. The results showed good agreement between the data from the numerical and experimental models. The piano key weirs had a higher coefficient of discharged compared with labyrinth weirs. The coefficient of discharge was observed to increase by 26 percent as the height of the PKW was increased by 50 percent (from 5 to 7.5 cm). This increase was 24 percent for labyrinth weirs.

J. Meshkavati Toroujeni, A.a. Dehghani, A. ٍemadi, M. Masoudian,
Volume 25, Issue 3 (12-2021)
Abstract

One of the crucial problems that exist in the irrigation networks is the fluctuation of the water surface flow in the main channel and changes in the flow rate of the intake structure. One of the effective methods to decrease these fluctuations is increasing the weir crest length at the given width of the channel with the use of the labyrinth weirs can be achieved for this purpose. The labyrinth weir is the same linear weir that is seen as broken in the plan view. In this study, a labyrinth weir with a length of 3.72 m, three different heights of 15, 17, and 20 cm, three different shapes of dentate (rectangular, triangular, and trapezoidal), and a linear weir were used in a recirculating flume with 15 m length and 1 m width. The result showed that for a given length and height of weir, with the increasing of the upstream water head to the weir height ratio (), the discharge coefficient decreases. The results showed that by increasing weir height, the discharge coefficient decreases for a given length of the weir. Linear weir and labyrinth weir without dentate create more water depth at the upstream by 3.3 and 1.2 fold compared with dentate labyrinth weir.

H. Elahifar, O. Tayari, N. Yazdanpanah, M. Momeni,
Volume 25, Issue 4 (3-2022)
Abstract

The discharge coefficient of labyrinth weirs increases with increasing the crest length in a certain width range. The present research was carried out in a laboratory flume with a length of 8 m, a width of 0.6 m, and a height of 0.6 m. The discharge coefficient of two-cycle symmetric and asymmetric rectangular labyrinth weirs was experimentally measured. The dimensional analysis by the Buckingham π theorem indicated that the discharge coefficient was dependent on Se, B/Wavg, Ht/P, and WL/WR. According to the results, the discharge coefficient decreased with increasing the hydraulic head in the symmetric and asymmetric labyrinth weirs and the linear weir. Asymmetric labyrinth weirs with a WL/WR of 2.05 outperformed symmetric labyrinth weirs with a WL/WR of 1. Quantitatively, the discharge coefficient of the labyrinth weir with a B/Wavg of 3.1 was respectively 21% and 94% higher than that with a B/Wavg of 2.93 and 2.76. The discharge coefficient of the labyrinth weir with a WL/WR of 2.05 was 10-27% higher than that with a WL/WR of 1. The discharge coefficient of the linear weir was 60-250% higher than that of labyrinth weirs.

M. Majedi Asl, T. Omidpour Alavian3, M. Kouhdaragh,
Volume 27, Issue 4 (12-2023)
Abstract

Weirs of the labyrinth have some advantages including the high coefficient of the irrigation of weir and the low fluctuation of water when the flow passes over the crest of the weir. In this research, the flow rate coefficient has been investigated by changing the weir geometry in terms of wall slope, arc cycle angle, and nose length change in the upstream and downstream of each cycle of the trapezoidal arc labyrinth weir. A total of 240 tests have been performed on 16 different physical models in a channel with a width of 120 cm and a narrowing of 20 cm from each wall. All models have been compared with the control model (normal labyrinth weir) (80A). The results showed that the 80B weir with an arc cycle angle of 20 degrees and without wall slope has a better performance than other weirs. Also, the weir with an arc cycle angle and a wall slope of 20 degrees in a divergent form (D20B) in the area (Ht/P) <0.31 has a better performance than other weirs with an arc cycle angle of 20 degrees, and after this area, the weir with a wall slope of 10 degrees has performed better in divergent form (D10B). In weirs with different cycles at an arc cycle angle of 20 degrees, the labyrinth weir with 5 cycles (N5) has performed better up to the point (Ht/P)=0.36. Also, at the maximum point, the difference is 13 and 17%, respectively, compared to the 4-cycle and 3-cycle weirs.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb