Search published articles


Showing 23 results for Safflower

P. Ehsanzadeh, A. Zareian Baghdad-Abadi,
Volume 7, Issue 1 (4-2003)
Abstract

Planting density, through its impact on the level of available environmental factors may have significant impacts on grain yield in safflower (Carthamus tinctorius L.). In order to investigate the impacts of plant density on grain yield, yield components and growth characteristics of safflower, a randomized complete block design field experiment with four replicates was conducted in spring-summer, 2000, at Lavark Research Farm (Lat. 320 32, N and Long. 510 23, E), College of Agriculture, Isfahan University of Technology, Isfahan, Iran. Arak-2811 and Kouseh safflower genotypes were seeded at 16.6, 22.2, 33.3 and 50 plants/m2. For establishing these plant densities, plants were seeded in 12, 9, 6 and 4 cm distances, respectively, on ten 8-m-long rows spaced 50 cm apart in each plot. Plant density had no impact on plant growth stages with the exception of button formation. Genotype had significant effects on days to seedling emergence, button formation, and 50% flowering. While both number of days and accumulated growing degree-days for all growth stages decreased with an increase in plant density, Arak-2811 was earlier than Kouseh for most growth stages. Number of branches and heads per plant, number of heads per branch, number of seeds per head and harvest index showed significant decreases with increasing plant density. The decrease in the mentioned grain yield attributes was mainly negated by greater number of plants per m2, leading to no significant variation in grain yield between plant densities of the two genotypes. Arak-2811 produced a significantly greater number of heads per branch and 1000-grain weight however, these differences did not lead to any greater grain yield compared to Kousehdue, mainly due to the greater number of branches in the latter. Neither of the leaf area index, leaf area duration, and crop growth rate varied significantly with plant density and between two genotypes, suggesting no difference in dry matter production capabilities of the two genotypes under environmental conditions of the present study.
A. Azari, M.r. Khajehpour,
Volume 7, Issue 1 (4-2003)
Abstract

Planting pattern through changing vegetative growth and utilization of environmental resourses affects yield components and seed yield. These effects were studied in the spring of 2000 at the Agricultural Research Station, Isfahan University of Technology, using a randomized complete block design with a split plot layout and three replications. Main plots consisted of three row distances (30 cm flat, and 45 and 60 cm on bed), and sub-plots included three planting densities (30, 40, and 50 plants m-2). The experiment was planted on March 13 using local safflower variety of Isfahan, named Koseh. Increase in row distance and plant density enhanced most developmental stages of safflower. Leaf area index was not significantly affected by row distance but increased as planting density increased. Up to the 50% flowering stage, 30 cm row distance produced highest plant dry weight, but had the least dry weight at the end of the growing season, probably due to the strong shedding of leaves. Up to the end of flowering stage, 50 plants m-2 treatment produced the highest plant dry weight, but ranked lower as compared to 30 plants m-2 treatment at the physiological maturity, probably due to the shedding of leaves. Row distance had no significant effect on number of branches per plant and per square meter, number of heads per branch, number of seeds per head, 1000-seed weight and harvest index. But number of heads per plant and per square meter as well as seed yield per plant and per square meter significantly decreased as planting distance increased. Plant density had no significant effect on number of branches per plant, number of heads per square meter, number of seeds per head, 1000-seed weight and seed yield. Increase in planting density increased number of branches per square meter, but reduced number of heads per branch and per plant, seed yield per plant and harvest index. The highest seed yield (4769 kg ha-1) was obtained with 30 cm row distance and 40 plants m-2 treatment. On average, 397 kg ha-1 petal was harvested, which has a large economic value. However, petal clipping, over all treatments, reduced seed yield by about 7.4%. Considering the advantages of uniform distribution of plants and adaptation of safflower to flat planting, 30 cm row distance with 40 plants m-2 might be appropriate for planting safflower under conditions similar to this experiment.
N. Dadashi, M. R. Khajehpour,
Volume 7, Issue 4 (1-2004)
Abstract

A field experiment was conducted in 2000 at the Agricultural Research Station, Isfahan University of Technology, to model the response of four safflower genotypes to day length and temperature changes under field conditions. Five planting dates (March 12, April 12, May 10, June 8, and July 12) and four safflower genotypes (Arak 2811, local variety Koseh, Nebraska 10 and Varamin 295) were evaluated using a randomized complete block design with split-plot layout in three replications. Date of planting was considered as the main plot and cultivars were randomized in the sub-plots. Number of days from planting (P) to emergence (E), stem elongation (SE) to head visible (HV), and HV to flowering initiation (FI) significantly reduced with delay in planting as the result of increase in temperature during these periods. Number of days from P to SE, duration of flowering (DF) and termination of flowering (TF) to physiological maturity (PM) were significantly affected by planting date and reduced as day length increased. The same was observed in the case of number of days from P to 50% flowering (MF) and to PM. Large co-variation of day length with temperature may explain a portion of day length contribution to the variation in the above periods. Varamin 295 was later than other genotypes with respect to the duration from P to HV, and specially, for rosette duration. In addition and for unknown reasons, the rate of development (RD) of Varamin 295 at all developmental periods could not be explained by day length and/or temperature variables. Among other genotypes, Koseh with 125 days, and Nebrska 10 with 118 days from P to PM were the latest and the earliest genotypes, respectively. The response of Koseh to planting dates, as measured by the duration of various developmental stages, differed from Arak 2811 and Nebraska 10. This was attributed to the probable response of Koseh to day length. RD of Koseh, Arak 2811, and Nebraska 10 during P to MF was explained by a linear regression and RD of Koseh during P to PM by a polynomial regression with day length by mean temperature as an independent variable. RD of Arak 2811 and Nebraska 10 during P to PM was explained by minimum temperature. It seems that partial sensitivity of Koseh to day length has a considerable significance in its adaptation to environmental conditions prevailing in the summer under Isfahan climatic conditions.
N. Dadashi, M. R. Khajehpour,
Volume 8, Issue 3 (10-2004)
Abstract

Although safflower is known to be a cool-season crop, it is usually planted as a summer crop in Isfahan. Thus, an experiment was conducted in 2000 at the Agricultural Research Station, Isfahan University of Technology, to study the effects of date of planting on growth, yield components, and seed yield of safflower. Five planting dates (March 12, April 12, May 10, June 8, and July 12) and four safflower genotypes (Arak 2811, local variety Koseh, Nebraska 10, and Veramin 295) were evaluated using a randomized complete block design with split-plot layout in three replications. Date of planting was considered as the main plot and cultivars were randomized in sub-plots. Delay in planting from March 12 to may 10 reduced plant dry weight per unit area, number of heads per plant, number of seeds per head, seed yield per unit area, harvest index and petal yield. The above traits increased as planting was further delayed from May 10 to June 8. Highest seed oil and lowest seed protein contents were also obtained for this planting date. Plants of July 12 planting date did not reach physiological maturity. Among the genotypes evaluated and over planting dates, the highest and lowest number of heads per plant, 1000-seed weight, and seed yield were produced byArak 2811 and Veramin 295 (mean of the first and second planting dates), respectively. Highest seed yield (4512 kg ha

-1) was produced by local variety Koseh in June 8 planting date. It might be concluded that this variety has adapted to the summer planting conditions of Isfahan by natural selection.
B. Sharifnabi, G. Saeidi,
Volume 8, Issue 3 (10-2004)
Abstract

Safflower (Carthamus tinctorius L.) is one of the multi-purpose oilseed crops which has a high adaptation to different conditions such as resistance to drought and it is suited to be grown in arid and semi-arid regions such as Isfahan province. Root rot disease is an important soil-borne disease of safflower in Isfahan, which can be caused by different pathogens. The objective of this study was to determine the causal agent of safflower root rot and to evaluate different genotypes for tolerance to the disease. Different species of Fusarium were isolated from sample collections. Laboratory and greenhouse inoculations indicated that F. solani was the only pathogenic species. In this experiment, 60 genotypes of safflower including breeding lines selected from various Iranian local populations and foreign cultivars were evaluated for reaction to the disease in a randomized complete block design with three replications in greenhouse. Artificial inoculation via injection of spore suspension of F. solani (106 spores/ml) was conducted on 8-week plants and then development of necrosis and death percentage were recorded. The results showed that there were significant differences among the genotypes in terms of reaction to the disease. The most resistant and susceptible genotypes were breeding lines of IUTE14310 and IUTC121 with mean necrosis of 9.67 and 28.33 mm, and death percentage of 32 and 74, respectively. Based on the means of necrosis and death percentage, the genotypes were significantly classified in 5 distinct groups including resistant (7 genotypes), moderately resistant (19 genotypes), tolerant (29 genotypes), moderately susceptible (3 genotypes), and susceptible (2 genotypes). The commercial foreign cultivars of AC Sunset, AC Sterling belonged to tolerant and moderately susceptible groups, respectively. However, Saffire was classified as a tolerant genotype. The local landrace of Kooseh which is widely grown in Isfahan province was classified as susceptible genotype. Phenotypic and genetic coefficients of variation (23.85 and 18.32 %, respectively) and a relatively high broad-sense heritability (59%) for necrosis and also the phenotypic and genetic coefficients of variation (25 and 21 %, respectively) and a high broad-sense heritability (73%) for death plants indicated that there was sufficient genetic variation for resistance and selection can be effective for producing resistant genotypes to Fusarium root rot disease.
F. Rafeie, G. Saeidi,
Volume 9, Issue 2 (7-2005)
Abstract

To study the genetic variation of different traits, 66 isolated lines from different Iranian safflower landraces of Isfahan, Azarbaijan, Khorasan, Kordestan, Central provinces along with 13 foreign genotypes and two local populations of Kooseh and Arak-2811 were evaluated in a simple lattice design with two replications. The experiment was conducted at the research farm, Isfahan University of Technology in the year 2001. The results indicated that there was significant differences among the genotypes for all the traits including days to 50% flowering, maturity, plant height, yield/plant, seed yield and its components and relative resistance to the powdery mildew disease (p<0.01). Seed yield of genotypes varied from 1285 to 3524 Kg/ha. The seed yield of local population of Kooseh which was dominant growing cultivar in Isfahan province and one of the latest in maturity and tallest genotype was 2317 Kg/ha, however, some genotypes were earlier in maturity and had the less plant height and more seed yield than Kooseh. Seed oil content was measured for the 20 high yielding isolated lines by the Soxhlet method and varied from 24.62% (in one of the isolated lines from Kordestan landrace) to 37.55% (in one of the isolated lines from Kooseh). The genotype of Kooseh had seed oil content of 35.99%. Based on the results of cluster analysis, the genotypes were classified in to 3 the distinct clusters and they were significantly different for all of the traits, except for days to 50% emergence. One of the clusters had the maximum seed yield, seed yield/plant, branches/plant, capitula/plant, seeds/capitulum and the minimum of seed weight. It was implied that the genotypes of this cluster which were isolated from local populations could be used for improving the seed yield. The cluster analysis also indicated that in isolated lines from different provinces, there was no special pattern between the genetic and geographical diversity.
A. Azari, M.r. Khajehpour,
Volume 9, Issue 3 (10-2005)
Abstract

The appropriate planting pattern of safflower in summer planting might be different from the planting pattern suitable for spring planting, and this has not been determined under Isfahan environmental conditions. A field experiment was conducted in the summer of 2000 at the Agricultural Research Station, Isfahan University of Technology, using a randomized complete block design with a split plot layout and three replications. Main plots consisted of three row distances (30 cm flat and 45 and 60 cm on bed), and sub-plots included three planting densities (30, 40, and 50 plant m-2). The experiment was planted in June 13 using local safflower variety of Isfahan, named Koseh. Leaf area index, number of heads per branch, number of seeds per head, 1000-seed weight, seed yield per plant and harvest index were not significantly effected by row distance. Increase row distance significantly enhanced most developmental stages and increased number of branches per plant and per square meter, but significantly decreased number of heads per plant and per square meter and seed and petal yields. The highest seed and petal yields (3841 and 373 kg per ha, respectively) were obtained with 30 cm row distance. Plant density had no significant effect on number of branches per plant, number of seeds per head, 1000-seed weight and seed yield per plant and per unit area. Plant density significantly enhanced most developmental stages and increased leaf area index, number of branches and number of heads per square meter, but significantly decreased number of heads per branch and per plant, petal yield and harvest index. The highest seed yield without petal clipping (4341 kg per ha) was obtained with 30 cm row distance and 50 plants m-2 treatment. The results obtained in this experiment indicate that this planting pattern might be appropriate for summer planting of safflower under conditions similar to this experiment.
N. Farid, P. Ehsanzadeh,
Volume 10, Issue 1 (4-2006)
Abstract

A major source of photoassimilates deposited into the seeds is the closest photosynthetic source to the latter sinks. While the contribution made to grain yield by floral parts and the adjacent photosynthetic surfaces has been determined for a number of crop plants, such information lacks regarding safflower. Thus the present study was aimed at estimating the contribution of photosynthesis of safflower head and the two adjacent leaves to the grain yield of this oil seed crop. A 4-replicate RCBD field experiment was conducted at Lavark Research Farm, Isfahan U. of Tech., using four genotypes (Nebraska10, Kouseh, Arak2811 and K12) and three levels of shading (heads only, heads and the two adjacent leaves and control) on safflower heads following pollination, using khaki paper bags. Genotypes differed in terms of days to heading and maturity, height, number of heads per plant, number of seeds per head, 1000-seed weight, seed weight per head and grain yield per plant. Shading on safflower head and the two adjacent leaves led to a significant decrease in number of seeds per head, 1000-seed weight, seed weight per head, grain yield per plant and harvest index. There was not a significant difference between the two levels of shading treatment. It could be concluded that, with the environmental conditions experienced during spring 2003 at Isfahan, the photosynthetic products of safflower head and the two adjacent leaves may contribute to grain yield per plant by as much as 37 percent.
M. Jamshid Moghaddam, S. S. Pourdad,
Volume 10, Issue 2 (7-2006)
Abstract

To evaluate seed germination and seedling growth of safflower in moisture stress, germination of 15 genotypes at four water potential levels (ψ: 0, -0.4, -0.8 and –1.2 Mpa) was tested by Polyethylene glycol (PEG6000). Maximum germination (Gmax), germination rate index (GRI), time length to reach 50% germination (T50), rootlet length (RL) and shootlet length (SL) were investigated. Effects of water potential levels and genotypes were significant for all the characteristics studied. Minimum water potential for germination was estimated between –1.17 and –1.59 Mpa in Goshkhani and LRV-51-51 genotypes, respectively. Different responses to moisture stress were found for rootlet length. In lower potential levels, seedlings had longer, weaker and thiner rootlets in comparison to the zero water potential (control). An increase in stress to –1.2 Mpa led to a severe reduction in rootlet elongation. All stress levels decreased GRI and SL, while potentials lower than –0.4 Mpa decreased Gmax. With a decrease in water potential from 0 to –0.8 Mpa, the T50stage was delayed three-fold compared to the control. Exotic genotypes had longer T50 stage than Iranian genotypes. The highest GRI was related to three Iranian genotypes LRV-51-51, Varamin 295, and Isfahan local, and the lowest was related to CW-74 exotic genotype. Some of genotypes were evaluated for seed yield, oil yield and seed oil percentage under rainfed condition in 2004-05. The highest oil yield average belonged to two exotic genotypes PI- 537598 and Lesaf (326.4 and 313.9 Kg/ha, respectively) and the least was related to Zarqhan 279 Iranian genotype (133.2 Kg/ha). Negative and significant correlation was observed between seed oil percentage and GRI in the 0, -0.8 Mpa potential levels. According to the results, the existing genetic variation for germination parameters can be used for genetic improvement of seed early vigor in safflower.
Kh. Bargahi, S. A. A. Moosavi,
Volume 10, Issue 3 (10-2006)
Abstract

Limitation of suitable water resources is the most important problem of agriculture in Iran. Considering the condition of shallow and saline groundwater in many parts of Iran, and relative resistance of safflower to salinity, it is necessary to study the contribution of groundwater to water consumption of safflower. In this research, the effects of different water table depths and salinity of groundwater on contribution of groundwater to evapotranspiration of safflower were studied. The treatments were four levels of water table depth (50, 70, 90, and 120 cm), two levels of groundwater salinity (EC of 0.6, and 10 dSm-1 ), and two irrigation regimes (irrigation with a depth of water equal to 75 percent of evaporation from water surface and frequency of 5 days, and no irrigation). The experiment was performed in a randomized complete block design with treatment combinations arranged in factorial manner and three replications. For fixing the water table in the pots (PVC pipe 200 mm in diameter and 120 cm high), a special equipment was built on the principle of Marriot bottle that was able to measure the contribution of groundwater to evapotranspiration of the plants. Results showed that salinity of groundwater, irrigation regime, and their interactions have significant effects on evapotranspiration of safflower. In addition, effects of water table depth, salinity of groundwater, irrigation regime, interaction of salinity and water table depth, interaction of water table depth and irrigation regime, and interaction of water table depth, salinity, and irrigation regime on evaporation from soil surface were significant. The ratio of contribution of groundwater to plant water consumption and evapotranspiration was in the range of 52.5 and 54.9% for saline groundwater and 81.7 to 82.7% for fresh groundwater. The ratio of evaporation from soil surface and evapotranspiration was in the range of 4.5 to 53.6% for different treatments. In all treatments of groundwater depths, irrigation treatment significantly decreased evapotranspiration, but no significant change in evapotranspiration was observed in irrigated and no irrigated treatments. Maximum amount of evapotranspiration (251 cm) occurred in the 50 cm depth of groundwater with salinity of 0.6 dS/m under irrigated condition, and minimum amount (43.9 cm) occurred in the 90 cm depth to groundwater with salinity of 10 dS/m under no irrigation condition. Generally, salinity of groundwater caused significant decrease in evapotranspiration, evaporation from soil surface, transpiration, and contribution of groundwater to evapotranspiration.
H. R. Bagheri, G. Saeidi, P. Ehsanzadeh,
Volume 10, Issue 3 (10-2006)
Abstract

Safflower (Carthamus tinctorius L.) is an oilseed crop and can have a considerable contribution to vegetable oil production in the country, since it has a high adaptability to different environmental conditions. This crop is grown in summer time as a second crop in Isfahan province. Therefore, this study was carried out to investigate the agronomic characteristics of the safflower breeding lines which were isolated from local populations of Iran in early spring and summer planting dates. Seven genotypes were evaluated at two planting dates, early spring (16 March) and summer (21 June), using a randomized complete block design (RCBD) with 4 replications at the research farm of Isfahan University of Technology. The results showed that the number of days to emergence, days to flowering and maturity and plant height decreased considerably in the summer planting date. However, the harvest index, seed yield per plant and seed yield per plot and oil yield increased in this planting date. Yield components were not significantly different in the two planting dates, except that 100-seed weight was significantly and considerably more in the second planting date. The average seed yield of genotypes was 2498 and 2845 kg/ha in spring and summer planting dates, respectively. In the first planting date, seed yield varied from 1876 Kg/ha, (for Kouseh genotype as check variety) to 2908 Kg/ha for E2428 line (selected from Isfshan population). In the second planting date, seed yield had a variation of 2124 to 3186 Kg/ha for the genotypes of S3110 (selected line from Khorasan population) and C111 (selected from Kouseh population), respectively. In the second planting date the check variety (Kouseh population) had a seed yield of 2965 Kg/ha. In both first and second planting dates, genotypes of E2428 and C116 (selected line from Kouseh population) had the maximum oil content in the seed, (33.9% and 32.3%د respectively). Genotype by planting date interaction was significant for seed yield and oil yield, since late planting date reduced seed yield in genotypes of S3110 and E2428, but it increased these traits in other genotypes.
Kh. Abolhasani, G. Saeidi,
Volume 10, Issue 3 (10-2006)
Abstract

This experiment was conducted to evaluate drought tolerance of selected lines from local populations of safflower (Carthamus tinctorius L.) at the Research Farm of Isfahan University of Technology in 2002. In this study, the 12 selected safflower lines from different local populations along with two exotic cultivars and a local population were evaluated at two different irrigation regimes, using a randomized complete block design with three replications. The first and second irrigation regimes were based upon the depletion of 50% and 85% of soil moisture content, respectively. The results showed that there were significant differences (p<0.01) among the genotypes for seed yield in both irrigation regimes. Also, the interaction between genotypes and irrigation regimes was significant (p<0.05). Based upon the genotype by environmental interaction analysis (method of Sneller and Dombek), the genotype H27 had the highest tolerance to drought stress, and its seed yield in the first and second irrigation regimes was 3353 and 3072 kg/ha, respectively. The growing variety in Isfahan province (Koseh population) was the most sensitive genotype to the drought stress and had a seed yield of 3525 and 2394 kg/ha in the above irrigation regimes, respectively. The assessment of different water stress indices (SSI, STI, TOL, GMP and MP) revealed that STI seems to be the most suitable index for recognizing the more tolerant genotypes to drought conditions and based on this index, E2428 was the most tolerant genotype, and the exotic cultivar of Ac-Sunset (from Canada) was the most sensitive one. The seed yield for genotype E2428 was 4174 and 3458 kg/ha, and for the genotype Ac-Sunset was 2004 and 1438 kg/ha in the first and second irrigation regimes, respectively.
Gh. Sayyad, M. Afyuni, S. F. Mousavi,
Volume 11, Issue 1 (4-2007)
Abstract

Accumulation of heavy metals (HMs) in cultivated soils is an important environmental problem in many parts of the world. In recent years, HM leaching through preferential paths and also in the form of metal-organic acids complexes has received much attention. For this reason, the effects of plants on creating preferential flow through the soil is important. The objective of this study was to assess the mobility of Cd, Cu, Pb and Zn in a calcareous soil (Typic Haplocalcids) planted with safflower (Carthamus tinctorious). The study was conducted on 12 undisturbed soil columns (22.5 cm in diameter and 50 cm in depth) in greenhouse. The top 10 cm of soil in half of the columns were contaminated with Cd, Cu, Pb, and Zn at the rates of 19.5, 750, 150 and 1400 kg ha-1, respectively. Half of the contaminated and uncontaminated columns were planted with safflower at a rate of 20 seeds m-2. Leachate was collected continuously and analyzed for these four heavy metals. After the crop harvest, soil samples were taken at 10 cm intervals and analyzed for DTPA-extractable and water-soluble HMs concentration. Results showed that heavy metal concentrations (DTPA and soluble) of the subsoil in planted columns were more than in fallow columns. The DTPA-extractable Cd, Cu and Zn concentrations in contaminated planted columns were 3.3-, 1.5- and 1.5-times more than in contaminated fallow columns, respectively. The water-soluble Cd, Cu and Zn in planted treatments increased 2.4, 1.2- and 1.1 times more than the fallow treatment. Lead concentrations in both planted and fallow treatments were similar. Metal uptake by safflower increased such that Cd and Zn uptake was more than Cu and Pb. Cd, Cu, Pb and Zn concentrations in the leachate of planted columns increased 32.0-, 2.5-, 6.0- and 2.7- time more than the uncontaminated planted columns. In summary, although topsoil contamination increased metal uptake by safflower, however the presence of safflower increased DTPA-extractable and also soluble metal concentrations in the soil profile and therefore enhanced metal mobility. The order of metal mobility was Cd > Zn >Cu >Pb.
H. Pourhadian , M.r. Khajehpour,
Volume 11, Issue 42 (1-2008)
Abstract

  Planting patterns through growth indices affect yield formation. To evaluate these effects on safflower, Koseh local variety of Isfahan, a field experiment was conducted in summer, 2004 at the Agricultural Research Station, Isfahan University of Technology. The experiment was performed using a randomized complete block design with a split plot layout and four replications. Main plots consisted of three row distances (20 and 30 cm flat and 45 cm on bed), and sub-plots included two planting densities (40 and 50 plant m-2). The experiment was planted on June 25. The results showed that p lant canopy closed sooner, leaf area duration (LAD) increased and plant dry matter weight, leaf area index (LAI) and crop growth rate (CGR) were higher up to the middle of seed development as row distance decreased. In addition, the highest relative growth rate (RGR) and net assimilation rate (NAR) were obtained in 20 cm row distance. The highest (3039 kg ha-1) and lowest (1930 kg ha-1) seed yields were obtained with 20 and 40 cm row distances, respectively. Plant density did not affect the rate of canopy closure, CGR, RGR, NAR and seed yield. But, maximum plant dry weight, higher LAI and lower LAD values were obtained with 50 plants m-2. The results obtained in this experiment indicate that 20 cm row distance with 50 plants m-2 might be appropriate for summer planting of safflower, a local variety of Isfahan, under similar conditions.


P. Heydaryzadeh , M.r. Khajehpour,
Volume 11, Issue 42 (1-2008)
Abstract

  During the past years, safflower genotypes have been selected from local variety of Isfahan, named Kouseh. The response of these genotypes to planting date might be different. To determine this, performances of several genotypes selected from Kouseh plus Arak 2811 ) as check ( were studied at the Agricultural Research Station, Isfahan University of Technology in 2002-2004. The experiment was conducted using a split-plot arrangement within a randomized complete block design with three replications. Planting dates were considered as the main plots and subplots consisted of 22 genotypes of safflower. Number of days from planting to emergence was highest (18.0 days) in early spring planting and lowest (10.3 days) in late spring planting. Days from planting to head visible, flowering and physiological maturity were decreased with delay in planting from autumn to late spring. Days from planting to emergence, head visible and physiological maturity were not influenced by genotype. Genotypes C116 and DP29 had the highest (145.0) and genotype ISF28 the lowest (140.2) days from planting to flowering. Plant height, number of first and second degree branches, number of heads per first and second degree branches, number of seeds per head, 1000-seed weight and seed weight per plant reduced significantly with delay in planting from autumn to late spring. Genotypes C128 and DP7 had the highest (120.0 and 120.5 cm, respectively) and genotype DP9 the lowest (104.2 cm) plant height. Genotypes DP6 and DP9 had the highest (12.8) and the lowest (6.7) first degree branches per plant, respectively. Arak-2811 had the highest (16.9) and genotypes DP9 and DP5 the lowest (7.2 and 7.1, respectively) second degree branches per plant. Number of heads per first degree branches was not significantly affected by genotype. Arak-2811 and genotype C114 had the highest (12.8 and 12.2, respectively) and genotype DP9 the lowest (5.1) number of heads per second degree branches. Genotype DP7 had the highest (45.9) and genotype C111 had the lowest (28.0) number of seeds per head. Genotypes DP3 and C128 had the highest (34.2 g) and lowest (22.0 g) 1000-seed weight, respectively. Genotype DP25 had the highest (20.5 g) and genotypes DP29 and DP9 the lowest (9.9 and 10.0 g) seed weight per plant. Harvest index was not affected by planting date and genotype. The result of this study showed that safflower may yield more in fall planting under conditions similar to this experiment. Genotype DP25 might be recommended for this planting date, genotypes ISF66 and DP25 for early spring planting and genotypes DP7 and ISF14 for summer planting.


P. Heydarizadeh, M. Sabzalian, M.r. Khajehpour,
Volume 12, Issue 45 (10-2008)
Abstract

During recent years, several genotypes have been selected from Isfahan land race Kouseh. The performance of safflower selected genotypes was studied in the field conditions, at Agriculture Research Station, Isfahan University of Technology during 2003. The experiment was carried out using a split plot arrangement according to a randomized complete block design with three replications. Planting dates (March 11, April 20, May 22 and June 23) were considered as the main plots and subplots consisted of 20 genotypes of safflower including 19 selections from Kouseh and Arak-2811 genotype. Days from planting to emergence and emergence to stem elongation were reduced as planting was delayed until the fourth planting date. Days from stem elongation to head visible was reduced with delay from the first to the third planting date, and then increased. Days from head visible to 50% flowering was reduced with delay from the first date to the third planting date, but increased in the fourth planting date. Days from 50 percent flowering to physiological maturity was increased with delay in planting. Days from planting to emergence, emergence to stem elongation, stem elongation to head visible and 50 percent flowering to physiological maturity were not influenced by genotypes. Genotype DP7 had the highest and genotype C111 and genotype DP25 had the lowest days from head visible to 50% flowering. The interaction between planting date and genotype in regard to days from stem elongation to head visible was also significant. Seed weight per plant was reduced with delay in planting date. Genotype ISF66 had the highest and genotype Arak-2811 had lowest seed weight per plant. The number of days from emergence to head visible in ISF66, DP5, C128 and Arak-2811 was affected by maximum temperature (Tmax), in genotype DP7 by Tmax2, in genotypes DP17, DP1 and C41100 by Tmin2 and in genotypes DP9, DP25, ISF28, ISF22, and C111 was affected by day length. It seems that development period from emergence to head visible was affected by temperature in the most genotypes. On March 11 planting date, genotypes had the maximum response to temperature and day length and the minimum response was observed in the fourth planting date. The genotype ISF66 had the highest seed yield on March 11 planting date. The result of this study showed that safflower should be planted in late March under condition similar to this experiment for maximum yield production.
S.s. Pourdad, K. Alizadeh, R. Azizinegad, A. Shariati, M. Eskandari, M. Khiavi, E. Nabatee,
Volume 12, Issue 45 (10-2008)
Abstract

Safflower (Carthamus tinctoius L.) is an Iranian native crop that is adapted to different environmental conditions of this country. Sixteen safflower varieties/lines were spring-planted in 6 research stations including Sararood (Kermanshah), Maragheh, Ghamlo (Kordestan), Khodabandeh (Zanjan), Shirvan (North Khorasan)and Khohdasht (Lorestan) with and without drought stress conditions each in a RCBD with 3 replications. Some drought resistante indices including Mean of Productivity (MP), Geometric Mean of Productivity (GMP), Tolerance (TOL), Stress Tolerance Index (STI), Stress Susceptibility Index (SSI) for seed yield and genotypes Cell Membrane Stability (CMS) were calculated. Results showed that STI was the most appropriate index to identify drough resistant genotypes. Estimation of STI from mean of all stations revealed that Gila, CW-4440 and PI-537598 with high STI showed high seed yield in both stress and non-stress conditions. Caculation of STI standard deviation for these genotypes showed that Gila had less STI stability over the locations than other two genotypes so, CW-4440 and PI-537598 are more stable in drought stress resistance. Analysis of variance for cell membrane stability (CMS) of genotypes showed the significant differences in 1% level of probability between genotypes. S-541 had the highest and Kino-76 had the lowest CMS. There were significant and strong correlations between STI, MP and GMP with CMS namely, genotypes with more stable membrane having more drought resistance in field condition. So, cell membrance stability can be a useful and fast method to screen germplasm and identify drought resistant genotypes. Cluster analysis based on STI,MP,GMP, CMS and seed yield in both stress and non-stress conditions divided genotypes into 3 groupes. Results of clustering also identified S-541, Gila, CW-4440 and PI-537598 as 4 superior genotypes and confirmed the results of other methods.
M. Hajghani, M. Saffari, A. A. Maghsoudi Moud,
Volume 12, Issue 45 (10-2008)
Abstract

Soil salinity is an increasing environmental stress on crops in most areas of Iran since farmers use underground saline water for irrigation. In order to investigate the effects of salt stress on germination and seedling growth of safflower (Carthamus tinctorius L.), an experiment was conducted at two stages (germination seedling growth), using four levels of NaCl salinity (0, 5, 10, 15 ds/m), and four cultivars of spiny and non-spiny safflower ( a landrace from Isfahan bred cultivars of IL, LRV and PI). The design was factorial and completely randomized based on 3- replicates (CRD). Germination percentage, germination velocity index, root and shoot length, root and shoot dry weight, root to shoot dry weight ratio and salt tolerance index were measured at germination stage. In seedling growth stage, traits such as, stem length, number of leaves, chlorophyll index, root and shoot dry weight, root to shoot dry weight ratio and salt tolerance index were also measured. Results for both growth stages showed that salt stress decreased all the above mentioned traits, significantly, in all cultivars. Salinity × variety interaction at germination stage was also significant, compared to seedling growth stage. Salt tolerance index decreased significantly with increasing salinity at both stages, but differences between cultivars were not significant. Cultivars PI and IL were characterized as the tolerant ones at germination and seedling growth stages, respectively. It could be concluded that safflower cultivars responded differently to salinity in germination phase compared to seedling growth phase, and that safflower suffers more from salinity during germination stage.
F. Amini, G. Saeidi, A. Arzani,
Volume 12, Issue 45 (10-2008)
Abstract

In order to investigate the relationship among seed yield and its components in safflower, path and factor analysis were conducted using the agronomic and morphological traits of 32 genotypes. Genotypes were evaluated on the Research Farm of Isfahan University of Technology, using a randomized complete block design with three replications. The correlation coefficients showed that number of seeds per capitula and number of capitula per plant had the highest positive correlation with both seed yield and seed yield per plant. The results of regression analysis showed that number of capitula per plant explained 43.6%, and along with seeds per capitula and plant height 60% of the phenotypic variations for seed yield. The regression analysis for seed yield per plant also revealed that seeds per capitula, capitula per plant and seed weight in order had more contributions to the variation of seed yield per plant and explained 81.2% of its variation. Path analysis showed that capitula per plant had the most direct positive effect on both seed yield and seed yield per plant however, this effect was decreased by the indirect and negative effect of seed weight. Results of factor analysis recognized 3 main factors which explained 81.81 % of total variation of the data. These factors were named the seed yield and its components, phenological traits and branching. In general, it can be concluded that seeds per capitula, capitula per plant and seed weight in order contributed more to the seed yield of safflower genotypes. In conclusion, these yield components can be used as selection criteria in breeding programs.
B. Hatami, J. Khajehali, M. R. Sabzalian,
Volume 12, Issue 45 (10-2008)
Abstract

Safflower having oil with high unsaturated fatty acids is a very valuable plant. However the sensitivity of safflower to some pests as safflower fly (Acanthiophilus helianthi), particularly in drought stress conditions has limited its production. In order to evaluate the effect of drought stress on population density and damage of important safflower pests, especially safflower fly, an experiment was conducted in the field using 5 irrigation treatments including 50, 70, 90, 110 and 130 mm evaporation from class A pan in a randomized complete block design with three replications. The local safflower variety used in this study was Isfahan land variety, Kooseh. In each irrigation regime, the half of one plot was locally sprayed by Chlorpyrifos in 2ml per liter of water to be compared with non-sprayed part. During 8 weeks of sampling, population of aphids, Uroleucon carthami, leafhopper, Empoasca decipiens and safflower fly, A. helianthi and also percentage of damaged heads by safflower fly were measured. The results showed that in non-sprayed conditions, the highest safflower fly (2.38 flies per net) and aphid population (165.57 aphids per plant) was observed at 130 mm evaporation regime. Drought stress also decreased (30.23 %) safflower seed yield. Severe drought stress together with non-spaying may increase safflower pests population particularly safflower fly and reduce seed yield. However low level of drought stress (70 mm evaporation from class A pan) may decrease relative number of insects and save irrigation water. Drought stress also decrease the population of leafhopper. In this study, 70 mm evaporation regime was the optimum irrigation treatment regarding lower aphid and fly damage (15.86% damaged heads in non-sprayed condition) and higher safflower seed yield (1687.5 kg/ha in sprayed condition).

Page 1 from 2    
First
Previous
1
 

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb