Search published articles


Showing 61 results for Afyuni

Majid Afyuni, Yahya Rezainejad, Babak Khayambashi,
Volume 2, Issue 1 (spring 1998)
Abstract

Land application of sewage sludge is potentially beneficial as an inexpensive nutrient source. However, problem with the use of sludge may exist from high soil concentrations and subsequent uptake of heavy metals by plant and entering of the metals into the human and animal food chains. A field study with lettuce (Lactuca sativa L.) and spinach (Spinacia oleracea L.) was conducted to examine uptake of heavy metals from a sludge amended soil as affected by sludge rate and time of sludge application. Sludge rates were 0, 22.5, and 45 ton/ha. To determine the effect of time on heavy metal uptake, a year after the first plants were harvested, one third of each plot was planted without sludge application and to the rest of each plot sludge was added in the same rates as before. Total and EDTA-extractable Cu, Zn, Pb, and Cd concentrations in soil were determined. The metal concentrations in shoots and roots of the plants were determined separately. Total metal concentrations showed an increasing trend with addition of sewage sludge. Copper, Zn, and Pb EDTA-extractable concentrations in soil and concentrations of these metals in the plants increased significantly with sludge rate. Time of sludge application did not have any significant effect on EDTA-extractable and plant uptake of metals. Sewage sludge also increased the crop yields significantly.
M.r. Mosaddeghi, M.a. Hajabbasi, A. Hemmat, M. Afyuni,
Volume 3, Issue 4 (winter 2000)
Abstract

Soil structure maintenance and stability is an important index indicating sustainable soil management. In this regard, components such as soil moisture and organic matter affect soil compactibility during farm machinery trafficking. Soils in Central Iran are commonly very low in organic matter (OM) and thus susceptible to compaction. This study was conducted to measure the effects of soil moisture content and manure application on soil compactibility. A randomized complete block design with four blocks (replicates) with the treatments nested (split-block) into the blocks was used in the soil (Typic Haplargids), located in Isfahan University of Technology Research Farm (Lavark). One-year aged manure treatments 0, 50, and 100 t ha-1 were incorporated into soil up to the tillage depth (20 cm) by a heavy disc. After five months (July-November), a two-wheel-drive tractor Universal Model U-650 was passed through the field at soil moisture contents of plastic limit (PL), 80% PL (0.8PL), and 60% PL (0.6L), either once (P1) or twice (P2). Bulk density (BD), cone index (CI), and soil sinkage (S) were measured as indices of soil compactibility and trafficability. Adding manure countered the effects of load and wetness on BD and CI, significantly. There was a significant difference between the effects of 50 and 100 t ha-1 of manure on BD but not on CI. Manure application reduced soil sinkage at high moisture contents (PL) but increased it at low moisture contents (0.6PL). Adding manure also reduced the BD and CI of subsoil. Repeating the passage of tractor (P2) increased compaction significantly. The significant increase in BD and CI did no occur at 0.6PL. When no manure was applied even at 0.6PL, there were limitations for trafficability, whereas this limit for 50 t ha-1 treatment was reached at 0.8PL. Results from this study indicate that the manure application at a rate of 50 t ha-1 reduces soil compactibility and increases soil moisture trafficability range.
F. Noorbakhsh, M. Afyuni,
Volume 4, Issue 1 (spring 2000)
Abstract

Field capacity (FC) and permanent wilting point (PWP) are important factors affecting irrigation scheduling and field management. FC and PWP can be estimated from some of the soil physical and chemical properties. Pressure Plate apparatus is usually used for determination of FC and PWP, but this is a time-consuming and laborious procedure besides, the apparatus may not be available in many laboratories. Samples were taken from 23 locations in Isfahan and Chaharmahal Va Bakhtiary provinces in central Iran. Soil texture, organic matter and cation exchange capacity were determined. Soil moisture at FC and PWP of the soils were measured with a pressure plate. Simple and multiple regression analyses were used to study the relationships between FC and PWP with sand, silt, clay, soil organic matter and cation exchange capacity.

 Results indicated that FC significantly correlated with sand, organic matter and cation exchange capacity in a stepwise model (r=0.97**). The PWP of soil also correlated significantly with silt, organic matter, and cation exchange capacity in a stepwise model (r=0.95**). Available water capacity (FC-PWP) correlated with sand in a stepwise model (r=0.82**). On the whole, results showed that FC and PWP can be estimated from some soil physical and chemical properties.


Y. Rezaenejad, M. Afyuni,
Volume 4, Issue 4 (winter 2001)
Abstract

Due to high production of organic residues such as sewage sludge and compost, land application is probably the best way to prevent accumulated residues in the environment. However, the risk involved in the land application of organic residues should be evaluated prior to the assessment of their economic and fertilizer values. The objective of this study was to evaluate the effect of organic residues on soil chemical properties, yield and uptake of heavy metals and nutrients by corn (Zea mays L.). The study was a randomized complete block design with three replications with four treatments including cow manure, sewage sludge, municipal compost and inorganic fertilizer.

The organic amendments were applied to the plots at a rate of 50 t ha-1 and inorganic fertilizer treatment consisted of 250 kg ha-1 ammonium phosphate and 250 kg ha-1 urea.

 Organic amendments significantly increased soil organic matter content, EDTA-extractable Fe, Zn, Cu and Pb and plant available P, K, and N. Uptake and concentration of nutrient in corn grain and shoots were significantly affected by treatments, whereas Cd and Pb concentrations were the same among the treatments. Cow manure and sewage sludge treatments had the highest and compost had the lowest corn silage and grain yields. Overall, the results indicated that cow manure and sewage sludge had a high fertilizer value and led to heavy metal concentrations in soil as well as corn tissues which were much lower than the reported standards.


M. Afyuni, M.r. Mosaddeghi,
Volume 5, Issue 2 (summer 2001)
Abstract

Tillage system effect, Conventional (CT) vs. No-Till (NT), on soil physical properties and Br transport was studied at two locations in North Carolina. The soil types were a Typic Paleudults at Coastal Plain (site 1) and a Typic Kanhapludults at Piedmont (site 2). Bulk density (BD), total porosity (TP), macroporosity (MP), and saturated hydraulic conductivity (Ks) .were measured in plant row (R), and trafficked (T) and untrafficked (N) interrows. A rainfall simulator was used to apply two early season rainfalls to 1 m2 plots where KBr suspension was surface applied for Br leaching study. The first simulated rainfall event (30 min) consisted of a low (1.27 cm h-1) or a high (5.08 cm h-1) rate applied, 24 h after Br application. One week later, the high rainfall rate was repeated on all plots.

 Soil samples were taken two days after applying first and second simulated rainfall (a week between them) and the end of season from different depths for measuring Br concentrations. Soil physical properties were affected by both tillage system and position.

Bulk density was higher in NT versus CT and in T position versus Rand N positions. Total porosity was lower in NT versus CT but MP was significantly higher in NT. Saturated hydraulic conductivity was about 90% lower at T position versus N and R positions. Coefficient of variation was quite large, making it difficult to obtain statistical differences between tillage systems. The surface l0-cm of soil contained the highest Br concentration for depth treatments with treatment differences occurring primarily in 0 to 25 cm depth. In first and second sampling dates, more Br leached under NT versus CT system. However, there was no significant difference between the two tillage systems in Br leaching at the end of the growing Season. In site 1, Br leached more due to the coarse texture and high Ks of the soil.


M. R. Bahremand, M. Afyuni, M. A. Hajabbassi, Y. Rezaeinejad,
Volume 6, Issue 4 (winter 2003)
Abstract

A field experiment was conducted to investigate the effects of sewage sludge and of time lapse after sludge application on soil physical properties. Four sewage sludge treatments (0, 25, 50, and 100 ton/ha) in a complete randomized block design with three replications were applied and mixed to a depth of 20 cm. Wheat was planted and soil physical properties were measured 23, 85, 148, and 221 days after sewage sludge application. Sewage sludge application significantly increased MWD, hydraulic conductivity, final infiltration rate, moisture percentage at 1/3 and 15 bars, and plant available soil moisture, while it significantly decreased soil bulk density. In general, the best results obtained with the 100 ton/ha sewage sludge treatment. Time lapse after sewage sludge application caused soil physical properties to approach the values of the control. However, even 221 days after sludge application, the 50 and 100 ton/ha treatments had significantly different values compared with the control treatment. The results in this research show that sewage sludge can help to improve soil physical conditions and this effect persists over long periods. This effect is specially important with plant available soil moisture and infiltration.
M. Shabanpour-Shahrestani, M. Afyuni, S. F. Mousavi,
Volume 6, Issue 4 (winter 2003)
Abstract

The objective of this research was to evaluate bromide leaching in a field under corn, wheat and alfalfa. Potassium bromide (300 kg/ha) was uniformly applied and 15 mm of water was sprinkled over the plots in the first and second years. Plots were leached 8 times during the first year and 9 times in the second year (each time with 100 mm of water). Soil samples were collected at 0-30, 30-60, 60-90 and 90-120 cm depths two days after each leaching practice. Bromide concentration in soil samples was measured using an ion selective electrode. Moisture content in each plot was measured using a neutron meter to a depth of 120 cm and after calculation of evaporation from soil surface, the net water applied was determined. CXTFIT software and Regional Stochastic Model (RSM) were used to simulate leaching under field conditions. The results showed that flow velocity and dispersivity of treatmens were not significantly different from the control in the first year, indicating that treatments had no effect on preferential flow. Control treatments were not significantly different in the first and second years. In the second year, flow velocity in wheat, corn and alfalfa treatments were 1.54, 1.86 and 2.21 times higher than flow velocity in the control, respectively. Dispersivity in alfalfa and corn treatments were 4.30 and 5.30 times higher as compared to the control. The increase in flow velocity and dispersivity is caused by an increase of preferential flow in the second year. The root channels remaining in soil at the end of the first year may also have increased preferential flow. After adding 25 cm of water, 30% of bromide leached from the top 50 cm soil in all plots in the first year and control plots in the second year but the values in the second year were 47, 67 and 70% of bromide leaching from the top 50 cm soil in wheat, corn and alfalfa plots, respectively.
S. Vaseghi, M. Afyuni, H. Shariatmadari, M. Mobli,
Volume 7, Issue 3 (fall 2003)
Abstract

Excessive application of sewage sludge leads to the accumulation of potentially toxic elements in soils. The objective of this greenhouse study was to examine the DTPA–extractability of Fe, Zn, Cu, Mn, Pb, Cd, Ni, and Co in relation to soil pH and to investigate the concentrations of these metals in corn (Zea mayz). The study was conducted using a factorial experiment in a completely randomized design with three replications. Sewage sludge was applied at 0, 50, 100, and 200 t/ha on four soils [Langaroud (pH= 4.8), Lahijan (pH= 5.7), Rasht (pH= 6.8), and Isfahan (pH= 7.9)]. Application of sewage sludge significantly increased DTPA-extractable Fe, Zn, Cu, Pb, Cd, and Ni in all soils. The increasing effect was in accordance with sludge level. Langaroud soil had the highest and Isfahan soil the lowest levels of DTPA-extractable metals. Application of sewage sludge increased plant growth and metals in the foliage of corn plants. The metal concentration in corn tissues also increased with decreasing soil pH. Overall, the application of sewage sludge as an organic material, particularly in acid soils, may increase availability of heavy metals, which may, in turn, result in soil pollution. Therefore, addition of sewage sludge to soils should be managed on the basis of the changes in soil heavy metal concentration.
A. Jafari Malekabadi, M. Afyuni, S. F. Mousavi, A. Khosravi,
Volume 8, Issue 3 (fall 2004)
Abstract

In recent decades, the use of nitrogen fertilizers has increased irrespective of their effects on soil properties, agricultural products and, particularly, on environmental pollution. Nitrate easily leaches from soils into groundwater. The objective of this study was to determine temporal and spatial nitrate concentrations in groundwater in agricultural, industrial and urban regions in some parts of Isfahan Province. Water samples were collected monthly from 75 agricultural, industrial, and urban wells of Isfahan, Najaf-abad, Shahreza, Natanz and Kashan during January-May 2001. The results indicated that NO3-N concentrations in most of the regions studied were higher than the standard level (10 mg/l) and nitrate pollution must be reckoned among the most serious problems of sustainable agriculture and exploitation of groundwater resources. Average NO3-N concentration in different wells ranged from 1.03 to 50.78 mg/l (4.64 to 228.5 mg/l as nitrate). The average NO3-N concentration in groundwater of Najaf-abad, Shahreza, Isfahan and Natanz-Kashan was 17.56, 14.6, 16.04, and 8.24 mg/l and 95.5, 100, 84 and 33.3 % of total wells in these regions had nitrate concentrations above the standard level, respectively. Maximum NO3-N concentration was detected in the agricultural region south of Najaf-abad (64.6 mg/l). Nitrate pollution in most of the sampling areas was mainly linked to agricultural activities. The average NO3-N concentration in groundwater of all agricultural, industrial, and urban regions, except for urban regions of Natanz and Kashan, were above the standard level. Generally, nitrate concentration level in groundwater increased with time and was maximum in March and April.
H. Naghavi, M. A. Hajabbasi, M. Afyuni,
Volume 9, Issue 3 (fall 2005)
Abstract

The objective of this study was to evaluate effects of cow manure on soil hydraulic properties and bromide leaching in a sandy loam soil (coarse loamy mixed, Typic Torrifluvents). Manure was applied at 0, 30, and 60 tha-1 at three replications in a completely random design. Three months after manure application potassium bromide (KBr) at rate of 300 Kg ha-1 Br was uniformly applied on the surface. Soil bulk density, porosity, organic matter, and soil moisture at18 levels of matric potentials were determined. Soil samples to the depth of 105 cm at 15-cm increments were collected after 100, 200 and 400 mm of irrigation. Soil bulk density, porosity, organic matter content, and soil moisture at different levels of matric potential increased significantly with manure application. Manure application also significantly affected the hydraulic parameters. Bromide leaching was significantly lower in plots with manure application and the greatest leaching occurred at the zero manure application treatment. The center of mass evaluation indicated a relatively similar result with measured values.
M. A. Nazari, H. Shariatmadari, M. Afyuni, M. Mobli, Sh. Rahili,
Volume 10, Issue 3 (fall 2006)
Abstract

Sewage sludge and effluents, as cheap sources of irrigation water and fertilizer, can supply plants with water and nutrients however, contamination of these sources with heavy metals and the possibility of human food chain contamination using these sources should be considered. In this research, the effects of industrial sewage sludge and effluents on concentration of some nurtients, heavy metals and sodium and dry matter yield of wheat (Triticum aestivum), barley (Hordeum vulgare) and corn (Zea mays) were investigated. The experiment was carried out in a greenhouse using a complete randomized design with four replication. The treatments comprised well water, well water + sewage sludge(50 tons/ha), and three industrial effluents from Iran Polyacryl factory including the cooling tower, the over flow and the factory outlet effluents. Chemical analysis showed the following results: The concentration of the elements in the sludge and the effluents were below the critical contaminating levels. The application of the treatments did not supply enough nitrogen for corn the cooling tower effluent could not supply enough nitrogen for wheat and barley all the treatments supplied enough P for wheat. None of the treatments could supply enough P for corn. The cooling tower, over flow and the factory outlet effluents could not supply enough P for barley, the micronutrient and heavy metal concentrations in the plant tissues using the effluents and the sewage sludge were higher than those for well water the dry matter yield of plants’roots and shoots was highest using well water + sludge and in comparison with the well water, effluents could increase the shoot dry matter yield.
M. Amini, M. Afyuni, H. Khademi,
Volume 10, Issue 4 (winter 2007)
Abstract

Heavy metals including cadmium (Cd) and lead (Pb) are entering agricultural soils from different routes and mainly due to human activities. Accumulated Cd and Pb in the soil would eventually enter the human and animal food chains and pose threat to their health. Therefore, evaluating heavy metal accumulation is necessary to prevent soil and environmental pollutions and should be considered by researchers as well as policy makers. This study was conducted to model the accumulation rates of Cd and Pb in the agro-ecosystems of Isfahan, Mobarakeh, Lenjan, Borkhar, Najafabad, Khomeinishahr and Felavarjan. Cadmium and lead accumulation rates in the agro-ecosystems were computed using a stochastic mass balance model which uses Latin Hypercube sampling in combination with Monte-Carlo simulation procedure. Agricultural information including crop types, crop area and yield, the type and the number of livestock, application rate of mineral fertilizers, compost and sewage sludge and also metal concentration in plant and amendments were used to quantify Cd and Pb accumulation rates. Modeling Cd and Pb accumulation rates indicated that the metals are accumulating in the agricultural lands in the studied townships. The largest Cd (18 g ha-1 yr-1) and Pb (260 g ha-1 yr-1) accumulation rates were found in the township of Isfahan but the minimum accumulation rates were found in township of Lenjan for Cd (3 g ha-1 yr-1) and Mobarakeh for Pb (10 g ha-1 yr-1). The major input route to agricultural soils is phosphate fertilizers for Cd but for Pb is manure on the regional scale. High application rates of sewage sludge and compost in agricultural lands in the township of Isfahan could result in considerable amounts of Cd and Pb entering the soils of this region.
E. Khadivi Borujeni, F. Nourbakhsh, M. Afyuni, H. Shariatmadari,
Volume 11, Issue 1 (spring 2007)
Abstract

Application of sewage sludge on the farmland as a source of crop nutrient had recently received considerable attention. Some management practices may be required to control the accumulation of toxic elements including Pb, Ni and Cd. Sequential extraction gives useful information on plant bioavailability of the elements. The objective of this study was to investigate the cumulative and residual effects of sewage sludge application on the chemical forms and mobility factor of Pb, Ni and Cd. Zero, 25, 50 and 100 Mg ha-1 of sewage sludge were applied for 1, 2 and 3 consecutive years in a split plot design, with three replications. Soil samples were taken from 0-20 cm at the end of the third year of application. Different chemical forms of Pb, Ni and Cd were measured. Results revealed that the soluble form (SOL) of Ni and Cd increased whereas Pb soluble form decreased with increasing levels and years of application. Exchangeable (EXC), carbonate (CAR) and organic (ORG) forms of the three elements increased as levels and years of application increased. Occluded (OCC) form decreased for Pb, Ni and increased for Cd. Residual form (RES) of Pb increased while that of Ni and Cd decreased. A gereral increase was observed for available (DTPA-extractable) concentration of Pb, Ni and Cd. Relative distributions of different chemical forms were in the following order: Pb: OCC > RES> ORG> CAR> EXC> SOL, Ni: RES> ORG> OCC> CAR>EXC> SOL and Cd: OCC> CAR> RES> ORG> EXC> SOL. The comparison of different forms of the metals showed the following orders: soluble Ni>Pb>Cd, exchangeable, carbonate and occluded Pb>Ni> Cd, organic and residual Ni> Pb>cd. Increasing the available (DTPA-extractable) concentration of the elements in such a calcareous soil showed that consecutive application of sewage sludge may increase the available (DTPA-extractable) concentration beyond critical levels. A significant corretation was observed between organic form and available (DTPA-extractable) concentration of the elements.
Gh. Sayyad, M. Afyuni, S. F. Mousavi,
Volume 11, Issue 1 (spring 2007)
Abstract

Accumulation of heavy metals (HMs) in cultivated soils is an important environmental problem in many parts of the world. In recent years, HM leaching through preferential paths and also in the form of metal-organic acids complexes has received much attention. For this reason, the effects of plants on creating preferential flow through the soil is important. The objective of this study was to assess the mobility of Cd, Cu, Pb and Zn in a calcareous soil (Typic Haplocalcids) planted with safflower (Carthamus tinctorious). The study was conducted on 12 undisturbed soil columns (22.5 cm in diameter and 50 cm in depth) in greenhouse. The top 10 cm of soil in half of the columns were contaminated with Cd, Cu, Pb, and Zn at the rates of 19.5, 750, 150 and 1400 kg ha-1, respectively. Half of the contaminated and uncontaminated columns were planted with safflower at a rate of 20 seeds m-2. Leachate was collected continuously and analyzed for these four heavy metals. After the crop harvest, soil samples were taken at 10 cm intervals and analyzed for DTPA-extractable and water-soluble HMs concentration. Results showed that heavy metal concentrations (DTPA and soluble) of the subsoil in planted columns were more than in fallow columns. The DTPA-extractable Cd, Cu and Zn concentrations in contaminated planted columns were 3.3-, 1.5- and 1.5-times more than in contaminated fallow columns, respectively. The water-soluble Cd, Cu and Zn in planted treatments increased 2.4, 1.2- and 1.1 times more than the fallow treatment. Lead concentrations in both planted and fallow treatments were similar. Metal uptake by safflower increased such that Cd and Zn uptake was more than Cu and Pb. Cd, Cu, Pb and Zn concentrations in the leachate of planted columns increased 32.0-, 2.5-, 6.0- and 2.7- time more than the uncontaminated planted columns. In summary, although topsoil contamination increased metal uptake by safflower, however the presence of safflower increased DTPA-extractable and also soluble metal concentrations in the soil profile and therefore enhanced metal mobility. The order of metal mobility was Cd > Zn >Cu >Pb.
M. Karami, Y. Rezainejad, M. Afyuni, H. Shariatmadari,
Volume 11, Issue 1 (spring 2007)
Abstract

Sewage sludge application on farmland as fertilizer is commonly practiced in many countries. Sewage sludge is rich in macro- and micro- nutrients. However, high concentration of heavy metals in sludge may cause pollution of soil, groundwater and human food chain because of uptake of toxic metals by crops. The objective of this study was to determine residual and cumulative effects of sewage sludge on concentration of Pb and Cd in soil and wheat. Different levels of 0, 25, 50 and 100 Mg ha-1 of sewage sludge were applied to the soil for four years. To study the cumulative and residual effects of the sewage sludge, applications were repeated on three fourth of each plot in the second year, on one half of plots in the third year and in one fourth of plots in the fourth year. Wheat grown in the plots, after the fourth year, soil samples from the 0-20 cm depth of the different parts of the plots were taken and analyzed. Wheat was also harvested roots, stems and grains were separately analyzed for the heavy metal concentritons. Cumulative sewage sludge application increased OM, CEC, ECe, total and DTPA-extractable concentration of Pb and Cd in soil significantly (P≤ 0.05). Residual sewage sludge in the soil also increased CEC, total and DTPA-extractable concentration of Pb and Cd significantly. Single sludge applications at different rates increased the DTPA-extractable concentrations of heavy metals. In subsequent years with no further sludge application, DTPA–extractable metal concentrations in soil decreased continuously approaching the levels in the control. However, even after four years, DTPA-extractable concentration of Pb and Cd, were still significantly higher in plots which received more than 50 Mg ha-1 sludge than control. DTPA-extractable concentrations of Pb was closely correlated with total concentrations. Sewage sludge increased concentration of Cd in roots and stems and Pb in grains significantly. Cumulative effects on concentrations of Pb in grains, and Cd in stems were more than residual effects. The results of this study show that cumulative and residual effects of sewage sludge application increased concentrations of heavy metals in soil and wheat.
Y. Lotfi, F. Nourbakhsh, M. Afyuni,
Volume 11, Issue 42 (winter 2008)
Abstract

  Organic fertilization has been practiced in Iran due to the shortage of soil organic matter. In recent years, attention has been payed to the organic fertilizers because their commercial production has recently started and demands for their application have increased. The objectives of this study were to investigate the effects of organic fertilizer type, rates and times of application on the N mineralization potential (NMP) in a calcareous soil (fine loamy, mixed, thermic, Typic Haplargid) in Isfahan region. The soil samples were collected from a previousely established field experiment. The experiment design was split plot with three replications. Each main plot was split into subplots receiving 1, 2 and 3 annual consecutive applications of cow manure and sewage sludge at the rates of 0, 25 and 100 Mg ha-1. The soil samples were taken from 0-15 cm depth, 6 months after the third application of the organic fertilizers. Nitrogen mineralization potential was measured by a long-term leaching-incubation procedure. Results indicated that NMP was similarly affected by cow manure and sewage sludge. Nitrogen mineralization potential in the treatments which received 100 Mg ha-1 organic fertilizers, was 4 and 1.7 times greater than that of control and 25 Mg ha-1 treatments, respectively. A significant increase was also observed in NMP in the treatments which received different times of application. The NMP in the three-year applied treatments was 5, 2.5 and 2.1 times greater than that of control, two- and one-year applied soils. Significant correlations were observed between NMP and corn yield (r=0.531**) and corn N uptake (r=0.568***). The product of NMP and N mineralization rate constant was also significantly correlated with corn yield (r=0.710***) and corn N uptake (r=0.734***). Different patterns were observed between the responses of total N and NMP in the treated soils.


A.a. Besalatpour, M.a. Hajabbasi, A.h. Khoshgoftarmanesh , M. Afyuni1,
Volume 12, Issue 44 (summer 2008)
Abstract

Total petroleum hydrocarbon (TPH) contaminations in soils may be toxic to human, plants and cause groundwater contamination. To achieve maximum TpH- reduction and to establish successfull stable vegetation cover in phytoremediation method, various criteria must be considered to choose the plants carefully. In this study, germination and subsequent growth of seven plants were tested in three soils with different petroleum contamination levels. Contamination treatments consisted of C0 (uncontaminated soil), C1 (1:1 w/w, uncontaminated: contaminated soil) and C2 (1:3 w/w, uncontaminated: contaminated soil). The experimental design was completely randomized split plots with three replications per treatment. The results showed that the presence of TPH in the soil had no effect on seed germination of agropyron, white clover, sunflower and safflower although canola seedlings were sensitive to these compounds and failed to produce dry matter yield (DMY) at the end of trial period. In contrast, seed germination of canola, puccenillia and tall fescue decreased in the petroleum contaminated soils. No reduction was found in DMY of puccenillia in contaminated soils (C1 and C2 treatments) compared to control however, the presence of TPH proportional to the contamination levels, decreased dry weight of sunflower and safflower. This reduction in growth and dry weight for tall fescue and agropyron was also observed in C2 compared to C1 treatment. Therefore, it seems that though agropyron, white clover, sunflower and safflower germinated well and the presence of TPHs in the soil treatments had no effect on their seed germination, they grew poorly. In contrast, grasses had poor seed germination but their subsequent growth and establishment in the contaminated soils was acceptable for subsequent phytoremediation trials.
N Rouhani, H Yang, S Amin Sichani, M Afyuni, S.f Mousavi, A.a Kamgar Haghighi,
Volume 12, Issue 46 (1-2009)
Abstract

Iran, with an average annual precipitation of about 252 mm (413 BCM) and renewable freshwater resources of 130 BCM, has irregular distribution of water resources. With a high population growth rate, agriculture remains the greatest water user in Iran but its production still does not meet the total food demand of the country. Due to unreliable water availability, the competition for water from other sectors and the increasing demand for food and better diets, Iran will experience water stress. In this study, virtual water trade in relation to water resources availability has been assessed as a way of relaxing water stress in Iran. The results showed that from the 21 food products, cereals, pulses, nuts and oilseeds are water-intensive crops according to their estimated virtual water content, while fruits, vegetables and industrial crops are not water-intensive. Considering the volume of virtual water entering the country through food imports, more water will be available for other essential uses. However, the virtual water trade has been developed rather unconsciously regarding water use and crop water productivity during the past two decades. For instance, wheat with a share of 58.5% in the virtual water import to Iran, was the dominant imported crop during 1983-2003. By importing 10.4 Mt of wheat, 11.6 BCM of water has been saved within the country during 1999-2003. However, Iran became self-sufficient in wheat production in early 2005. Consequently, this latest drive for self-sufficiency in the production of wheat, as a water-intensive crop, put tremendous pressure on domestic water resources. The trend in crop trade in terms of quantity and virtual water for other groups of crops has also been shown in the study. Seemingly, crop production and import have been greatly influenced by the weather conditions. With the increasing water scarcity, the role of virtual water in food security is expected to rise continuously in Iran. Thus, conscious virtual water trade as a policy measure in water management and judicious adjustment in agricultural structure will ensure sustainable food security and water availability in Iran.
R Rostamian, S.f Mousavi, M Heidarpour, M Afyuni, K Abaspour,
Volume 12, Issue 46 (1-2009)
Abstract

Soil erosion is an important economical, social and environmental problem requiring intensive watershed management for its control. In recent years, modeling has become a useful approach for assessing the impact of various erosion-reduction approaches. ِDue to limited hydrologic data in mountainous watersheds, watershed modeling is, however, subject to large uncertainties. In this study, SWAT2000 was applied to simulate runoff and sediment discharge in Beheshtabad watershed, a sub-basin of Northern Karun catchment in central Iran, with an area of 3860 km2. Model calibration and uncertainty analysis were performed with SUFI-2. Four indices were used to assess the goodness of calibration, viz., P-factor, d-factor, R2 and Nash-Sutcliffe (NS). Runoff data (1996-2004) of six hydrometery stations were used for calibration and validation of this watershed. The results of monthly calibration p-factor, d-factor, R2 and NS values for runoff at the watershed outlet were 0.61, 0.48, 0.85 and 0.75, respectively, and for the validation, these statistics were 0.53, 0.38, 0.85 and 0.57, respectively. The values for calibration of sediment concentration at the watershed outlet were 0.55, 0.41, 0.55 and 0.52, respectively, and for the validation, these statistics were 0.69, 0.29, 0.60 and 0.27, respectively. In general, SWAT simulated runoff much better than sediment. Weak simulation of runoff at some months of the year might be due to under-prediction of snowmelt in this mountainous watershed, model’s assumptions in frozen and saturated soil layers, and lack of sufficient data. Improper simulation of sediment load could be attributed to weak simulation of runoff, insufficient data and periodicity of sediment data.
M Karami, M Afyuni, Y Rezaee Nejad, A Khosh Goftarmanesh,
Volume 12, Issue 46 (1-2009)
Abstract

Sewage sludge application on farmland as fertilizer is commonly practiced in many countries. Sewage sludge is rich in macro and micronutrients. However, high concentration of heavy metals in sludge may cause pollution of soil, groundwater and human food chain because of toxic metals uptake by crops. The objective of this study was to determine residual and cumulative effects of sewage sludge on concentration of Zn and Cu in soil and wheat. Different levels of 0, 25, 50 and 100 Mg ha-1 of sewage sludge were applied to the soil for four years. To study the cumulative and residual effects of the sewage sludge, applications were repeated on three fourth of each plot in the second year, on one half of plots in the third year and on one fourth of plots in the fourth year. Wheat was grown in the plots. After the fourth year, soil samples from the 0-20 cm depth of the different parts of the plots were taken and analyzed. After harvesting the wheat, roots, stems and grains were separately analyzed for the heavy metal concentrations. Cumulative sewage sludge application significantly (P≤0.05) increased the total and DTPA-extractable concentration of Zn and Cu in soil. Residual sewage sludge in the soil also increased the total and DTPA-extractable concentration of Zn and Cu. Single sludge applications at different rates increased the DTPA-extractable concentrations of heavy metals. In subsequent years with no further sludge application, DTPA–extractable metal concentrations in soil decreased continuously, approaching the levels in the control. However, even after four years, DTPA-extractable concentration of Zn in plots receiving more than 50 Mg ha-1 and Cu in plots receiving more than 25 Mg ha-1 sludge, were still significantly higher than control. DTPA-extractable concentrations of metals were closely correlated with total concentrations. Sewage sludge had a significant effect on concentration of Zn and Cu in stems and grains. Cumulative effects on Zn and Cu uptake by stems were more than residual effects. The results of this study show that cumulative and residual effects of sewage sludge application increased concentrations of micronutrients in soil and wheat.

Page 1 from 4    
First
Previous
1
 

© 2021 All Rights Reserved | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb