Search published articles


Showing 2 results for 1000-Grain Weight

N. Salamati, A. Danaie,
Volume 24, Issue 4 (2-2021)
Abstract

In order to study and evaluate the drought stress indices in surface irrigation by furrow method on grain yield, the yield components and water use efficiency, an experiment was conducted at Behbahan Agricultural Research Station in 2014-16. The experiment was conducted as a split plot in a randomized complete block design with 4 replications. Irrigation at two levels (irrigation after 100 and 200 mm evaporation from Class A pan, respectively) was evaluated as the main factor and corn cultivar was considered at 6 levels as the sub-factor. Comparison of the  mean water use efficiency in irrigation and cultivar interactions showed 100 mm evaporation from Class A pan and cultivars V4 (PH1), V5 (PH3) and V2 (SC Mobin) were ranked the first and foremost, respectively, with the  yields of 1.353, 1.299 and 1.296 kg of corn per kg of water consumed, respectively. The mean water consumed in 2014 of the experiment in 100 and 200 mm evaporation from Class A pan was 521.2 and 462.4 mm, respectively. Pearson correlation coefficient results  also showed that with increasing the  yield components, such as the  number of grains per row and number of rows, the  1000-grain weight was  increased due to  the highly significant correlation coefficient of 1000-grain weight with grain yield (r = 0.8776).  Consequently, grain yield was also increased. The highest values of SSI, STI, MP, TOL, GMP HM and YI indices were calculated in V4 (PH1). The higher values of the above indices in cultivar V4 (PH1) than other cultivars caused this treatment to be introduced as the superior one. The decreasing trend of corn yield, which was caused by water deficit stress, increased SSI, STI, MP, TOL, GMP and YI indices, while it decreased corn yield, leading to incremental changes in the YSI indices.

N. Salamati, A. Danaie, L. Behbahani,
Volume 25, Issue 2 (9-2021)
Abstract

To investigate and evaluate the effects of different levels of drip irrigation on grain yield and yield components, oil yield, seed oil percentage, and seed water use efficiency, an experiment was performed at Behbahan Agricultural Research Station during two crop years 2018-19 and 2019-20. The experiment was conducted in split plots based on a randomized complete block design with 3 replications. The amount of water in tape drip irrigation was compared at four levels of 40, 60, 80, and 100% water requirement in main plots and two sesame cultivars Local of Behbahan and Shevin in subplots from the beginning of flowering. Comparison of mean interaction effects of irrigation levels and cultivars showed that the treatment of 100% water requirement in the Behbahan local cultivar with the yield of 1218.0 kg/ha was ranked first and foremost. Water consumption in the highest treatment (100% water requirement and Behbahan local cultivar) was calculated to be 5389.4 m3/ha. Treatments of 100% and 80% of water requirement in superior cultivar (local Behbahan) with water use efficiency of 0.226 and 0.210 kg/m3 had no significant difference, respectively, and were in the first place. Pearson correlation coefficient calculated for the measured traits showed that the highest correlation of water volume was calculated (r = 0.9271) with the weight of one thousand seeds. Significant correlations of water volume with grain yield and yield components indicated that sesame was susceptible to drought stress and attention to optimal water management in sesame cultivation. Therefore, decreasing the volume of water consumed and consequently drought stress in sesame reduced yield and yield components.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb