Search published articles


Showing 8 results for Ahp

R. Ramzi, A. Khashei-Siuki, A. Shahidi,
Volume 18, Issue 69 (12-2014)
Abstract

Limitation of available water resources and crisis of water scarcity has been discussed in water conferences since a long time ago. In Iran’s climatic conditions, the most important problem for increasing agricultural production is limitation of available water resources. Drip irrigation methods are one of the suitable solutions for efficient use of water resources under a condition that selection, design, implementation and operation of drip irrigation systems would perform precisely. In this study, potential and suitability of drip irrigation systems in South Khorasan province was analyzed according to climatic conditions, quality of groundwater resources, topographical status and soil profile areas. To do this, all the effective parameters in drip irrigation are zonated and classified using software Arc GIS 9.3 and then using computational average method in AHP they are turned into a map to find suitable places for drip irrigation in the province. According to the study, about 50 percent of the land in South Khorasan province has the ability to use the drip irrigation system. The remaining 50 percent can also be used for drip systems if improved, with the exception of 9 plains. However, the performed drip irrigation plans are rare in this province and there should be more efforts to inform farmers to develop such systems in this province.


M. Goodarzi, J. Abedi Koupai, M. Heidarpour, H. R. Safavi,
Volume 19, Issue 73 (11-2015)
Abstract

Due to the time and space changes of hydrological events in the arid and semi-arid regions, recharge measurement in these areas is very difficult. Hence, groundwater recharge is a complicated phenomenon for which there is not a fixed method to determine. The aim of this research was to develop a method for estimation of groundwater recharge based on a hybrid method. In this study, a hybrid method for calculating recharge was presented by combining empirical methods with a mathematical model, MODFLOW, and AHP analysis. The results showed that the most important parameters affecting groundwater recharge are soil properties, unsaturated thickness, land cover, land slope, irrigation and precipitation, from which the soil properties and precipitation are most important. The results showed that the overall impact of small changes in precipitation and temperature significantly affect the groundwater recharge, and heavy soils are much more sensitive to these changes than light soils. By changing 10% precipitation, the recharge rate is changed between 16% and 77% and by changing 1ºC temperature, the recharge rate is changed between 6% and 42%. Also, results showed that precipitation and evapotranspiration changes in four months including December, January, February and March had significant effects on annual recharge rate. Using the results of this research, the vulnerable areas of the plain, appropriate places and time for artificial recharge could be identified. Overall, the results of this study can be useful in various aspects of groundwater management.


Z. Feyzi, A.r. Keshtkar, A. Malekian, H. Ghasemieh,
Volume 20, Issue 76 (8-2016)
Abstract

Shortage of rainfall and also relatively high intensity precipitations in short-term are characteristics of arid regions of the world, such as central of Iran. Studies have indicated that massive flooding causes great loss of life and properties every year. Also, Water scarcity in arid and semiarid regions of the world will cause fragile living conditions in these areas. Therefore, it is needed to reduce runoff rates using actions such as dam construction or artificial recharge techniques. In this study, seven factors were applied such as the slope, surface permeability, transmissibility in alluvium, alluvial quality, land use, runoff volume and thickness of the unsaturated layer to determine suitable areas and site selection for flood spreading and artificial recharge in south of Kashan plain. After preparing the digital layers, criteria weights were determined using Fuzzy AHP. The weighted maps were acquired and merged together. Results indicated that land use criterion with the greatest weight (0.22) was determined as the first priority in the site selection for flood speading. The parameters of runoff volume, permeability, slope, depth of the unsaturated layer, alluvial quality, and transfer coefficient were accounted as the second to seventh priorities. 


A. Arabameri, K. Shirani,
Volume 21, Issue 3 (11-2017)
Abstract

Recent urban development and population growth in Shahrood tend to adopt a strategy for ground water management. This project, which is a descriptive- analytic type study based on field observation and laboratory analysis, aims to delineate proper sites for groundwater artificial recharge using integrated AHP-TOPSIS.  First, the study area was delineated using remote sensing techniques. Then, appropriate criteria including 5 main criteria and 12 sub-criteria were obtained by field observation and literature review. Then, the appropriate sites for groundwater recharge were determined. The process of the used method consists of designing hierarchical structure of the project, preparation of pairwise comparison matrices, weighting criteria and sub criteria values by experts, and ultimately ranking them by TOPSIS method. Results showed that lithology, slope, water table depth, and land use have the main role in sites delineation. A number of control sites were employed for model validation that indicates 87.20 percent accuracy. Overally, 73.6 and 82.12 percent of the total area were grouped as very suitable and suitable classes, respectively.
 


V. Sarvi, H. R. Matinfar,
Volume 23, Issue 1 (6-2019)
Abstract

In the face of rapid growth of the population and the need for food production sectors, one of the ways to achieve this is to increase the production per unit area. In modern agriculture, the preparation of soil fertility map seems to be necessary to plan for appropriate use of fertilizers for crops. This study was conducted to prepare a distinct map for evaluating the soil fertility according to soil chemical properties in 191 soil samples of Ardabil Plain in Ardabil Province. To achieve this goal, the available N and P, K, EC, Fe, Zn, Mn and the organic matter of soil were mapped using geostatistical Kriging estimator into the Geographic Information System (GIS) by the ArcGIS software. The Analytical Hierarchy Process (AHP) was used for weighting the soil fertility factors as the input data. Then, a membership functions was defined for each factor by factorial scoring and the map of soil fertility was prepared and classified by using the AHP technique into the GIS program. The results showed that most of nitrogen and phosphorus with the weight of 0.293, 0.202 had the mostly infraction on the soil fertility and production. Survey map of the distribution showed that most of the factors were studied in the northern region with the low nutrients. The results also showed that 23.7 percent of cultivated land fertility maps had a poor fertility status, 28.3 percent of the land had a moderate fertility status, 25.4 percent of the land was good and the fertile land with 22.6 percent had a very good fertility status.

M. Moradizadeh, K. Shirani,
Volume 23, Issue 4 (2-2020)
Abstract

Water resources management depends on the precise assessment of water storage and access in each region, as well as environmental interactions of these resources. The man objective of this study was to delineate the potential zones of groundwater storage using FAHP. Mapping and assessment of it required maps of geomorphology, drainage, density, lineament density, slope and vegetation, which were initially prepared as the input layers in FAHP; the appropriate weights were attributed to them based on FAHP. Potential zones of ground water were classified into five classes of poor, average, good, very good and excellent. The number and density of available wells and springs in the study area dealt with the potential of the region for groundwater storage. So, ROC was used to assess the validation of results, considering spring points as signs of water resources. According to the results, classes of very good, good, average, weak, and very weak were ranked as the first to the last in terms of privilege order with an area of 37.7, 55, 40, 107, and 98.4 square kilometers, respectively.

F. Kaboudvand, S. S. Mehdizadeh,
Volume 24, Issue 4 (2-2021)
Abstract

The Khanmirza plain is one of Iran’s fertile plains that is located in Chaharmahal Bakhtiari province. Agriculture in the area is very prosperous, but the lack of rain and over-harvesting from consumption wells has led to a reduction in groundwater levels, even causing land subsidence. Moreover, the high usage of chemical manures, especially nitrate manures, has increased the number of solutes and chemical materials in the groundwater. Thus, for this plain, making artificial ponds is important to modify the storage of the aquifer. In this study, to define the optimum locations of the artificial ponds, the effect of 12 factors was considered. The analytic hierarchy process (AHP) method was used to introduce the weight of each parameter in comparison to other factors. Afterward, the spatial priority of all factors was derived using the Geographic Information System (GIS) technique. The produced GIS layers were laid on each other and the optimum locations were obtained. Agricultural drainage was an effective index for recharge purposes. The results of the study demonstrated that groundwater level decline got the maximum weight (40%), while the land slope had the minimum weight, since the vicinity to available floodways was considered as an independent criterion. The results also showed that regions with a total area of 18 km2 in north and north-west of the Khanmirza plain could be the optimum and most suitable places for artificial ponds construction.

J. Chezgi, M. Asiyaei,
Volume 25, Issue 1 (5-2021)
Abstract

Erosion causes the reduction and degradation and the soil fertility; one of its most important consequences, endangering the food security of the inhabitants of the area. Therefore, to reduce erosion, it needs to be controlled and managed using good soil conservation methods. It is only necessary to manage and control the full impact of the factors affecting the soil first. If there is a critical state of erosion in the four watersheds, identifying the precise location of erosion will be done quickly and with less cost; thus, further erosion control and counter-operation will be feasible. In this study, geographic information system and decision making models of AHP and ANP in Bagheran region of Birjand were used to determine the erosion prone areas. First, 10 effective criteria including rain, slope, slope direction, soil, geology, permeability, vegetation, land use, distance from road and village, were determined on the erosion in the area based on the expert opinion and library studies. Next, the questionnaires were sent to experts to explore g the impact of the criteria on erosion; after completing the questionnaires based on Expert Choice and Supper Decision software, the relative importance of the criteria was obtained. The maps were then compiled and integrated according to the relative importance of the criteria. Rainfall factor had the greatest impact on the erodibility of the area in the AHP method with the relative importance of 0.21 and the   vegetation criterion with the weight of 0.158 in the ANP method had the most impact on the determination of erosion prone areas. Finally, the erodibility map of the area was obtained based on the presented models. Subsequently, the region was classified into five classes of erosion susceptibility, with areas of moderate sensitivity having the most area in both models. In the lower and upper classes, the ANP method performed better; in the middle classes the AHP method performed better.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb