Search published articles


Showing 4 results for Absorption

M. Kh. Pirouzi Fard,
Volume 10, Issue 2 (7-2006)
Abstract

In the present study, the effects of sodium metabisulphite concentration (2, 4, 6, 8, 10%), dipping time (2.5, 5.0, 7.5, 10 min.) mixing of the solution including: continuous mixing , once per 2.5 minutes , once per 5.0 minutes and without mixing (I, II, III, IV) and pH of the solution (4.62, 3.62, 3.42) on the absorption of sulphure dioxide by halved Riogrande variety tomatoes prepared for sun drying were investigated. The experiment design was completely randomized plots with the order of 5, 4, 4 and 3 treatments, each with four replications. The results showed that increasing the solution concentrations, dipping time, mixing and decreasing pH increased the rate of SO2 absorptions. The increment of SO2 in tomato under the effect of the above mentioned factors have been shown in different tables and figures. The mathematical models of relationship among the rate of absorption of SO2 , the concentration of sodium metabisulfite solution, dipping time, also the effect of metabisulfite solution pH were developed. Significant differences were found in these increments in all the treatments (α= 0.01).
F Hosseini, M Habibi Najafi, N Sedaghat,
Volume 13, Issue 48 (7-2009)
Abstract

In this study, two kinds of packages namely tinplate (TP) can and flexible pouch were used for black cherry in syrup. Samples were taken in the same condition in these two packages. Other variables were temperature (4 levels) 4, 23, 35 and 40°C and time (4 levels) 0, 30, 60 and 90 days after preparation of the samples. Samples were digested according to the approved method of AOAC (AOAC, 1990). The total concentrations of Iron, Tin and lead, were determined by atomic absorption spectrophotometer. The mean concentration of Iron, Tin and Lead was 4/858 ppm, 38/459 ppb, 38/459ppb in TP cans and 3/161 ppm, 387/978ppb, 33/993 ppb in flexible pouches. Statistical analysis showed that at %5 probability level, the mean value of Iron content of the product packed in TP cans were significantly higher than the control the same was true about both lead and Tin content. However, this trend was not proved in flexible pouches. Furthermore, temperature had a significant effect on the metal content of the samples.
J. Abedi Koupai, S. S. Eslamian, M. Khaleghi,
Volume 16, Issue 62 (3-2013)
Abstract

Crisis of quality and quantity of water resources is one of the most important problems in arid and semi-arid areas such as Iran. Wastewater treatment and reuse as a potential source of water can not only compensate for the water scarcity but also can prevent the hazardous pollutants from entering the groundwater and surface water resources. There are various methods to improve water quality, among which method of filtration is an effective and efficient method to remove elements. The most important issue for filter system is the selection of adsorbent materials. In this work, the tire chips were used as adsorbent. Column adsorption tests in a pilot system were conducted in two distinct steps using two types of water, including salt water and industrial effluents. Each test was conducted as a factorial experiment with three factors based on a completely randomized design with three replications. Three factors were studied including particle size (2-5 mm and 3-5 cm), filter thickness (10, 30 and 50 cm) and sorbent contact time with solution. The results showed that adsorption rate increased by increasing the thickness of the filter and sorbent contact time with solution. The best performance of reducing the salinity was observed in the treatment with 50 centimeter thickness and 24 contact hours. The salinity of this treatment was reduced by 20.3 percent (in the test with salt water) and 11.2 percent (in the test with industrial effluents). This filter reduced the heavy metals of lead, zinc and manganese up to 99, 72.1 and 41.4 percent, respectively. Also, the performance of millimeter and centimeter particles did not show a significant difference. Generally, the tire chips showed a proper performance to improve the water quality especially for industrial wastewater.
, , , ,
Volume 18, Issue 68 (9-2014)
Abstract

Zeolite is widely used for removing heavy metals from aqueous solutions. The objective of this study was to assess three sizes of zeolite in removing lead, nickel and cadmium from wastewater. A splite-plot experimental design was employed with 45 treatments and three replications at Shiraz University Lab in 2011. The treatments were five different concentrations of the pollutant and three sizes of zeolite (0.075, 0.2 and 0.425mm). The concentrations for lead were: 40, 250, 500, 1000 and 1250 mg/l and 4, 6, 15, 20 and 40 mg/l for nickel and cadmium. The results showed that the effect of concentrations of pollutant was significant, and by increasing the concentration of pollutant, absorption of heavy metals by zeolite increases linearly. Maximum lead absorption occurred at 1250 mg/l with 59.97 mg and minimum absorption of lead was related to the concentration of40 mg/l with 1.82 mg for 1 grams of zeolite. Maximum and minimum nickel absorptions were related to the concentration of 40 and 4 mg/l with 1.92 and 0.16 mg for 1 grams of zeolite, respectively. The values were 1.87 and 0.18 mg for 40 and 4 mg/l for cadmium, respectively. The effect of size of zeolite on the pollutant adsorption was not significant.

Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb