Search published articles


Showing 3 results for Alkalinity

H. Beigi Harchegani, S. S. Heshmati,
Volume 18, Issue 67 (6-2014)
Abstract

Shahrekord groundwater is the main source of water for drinking, and the agricultural and industrial activities of its inhabitants. Water quality measures of scaling and corrosion can deteriorate steel-based systems used for storage or supplying water for drinking and to industry and irrigation. The main aim of this study was to assess the spatial variability and mapping of scaling and corrosion using Langelier index (LI) and Ryznar index (RI) and that of the related parameters of pH, total dissolved solids (TDS), total hardness (TH), and total alkalinity (TA) in Shahrekord groundwater. For this purpose, water samples from 97 wells were analyzed for pH, TDS, TH, and TA and LI and RI indices were calculated. The Gaussian model best described the spatial variability of TDS while the Spherical model was best for all other parameters. Based on LI and RI averages of, -0.13 and 7.9 respectively, Shahrekord groundwater has a slight potential for corrosion. The values of all parameters, except RI, were lowest in the northwest and highest in the southeast of the aquifer. In most parts and in the center of the aquifer, the values of LI ranged from -0.5 to zero indicating negligible scaling potential. Spatial distribution of the RI index was almost inversely symmetrical to that of LI index. LI showed strong positive correlations with its components (varying from 0.61 to 0.90) while RI had strong negative correlations with its components (ranging from -0.66 to -0.98). LI and RI had the strongest correlations, respectively, with pH (r=0.90) and total alkalinity (r=-0.90).
B. Khalili Moghadam, Z. Ghorbani, E. Shahbazi,
Volume 18, Issue 69 (12-2014)
Abstract

Salt with various kinds and contents is one of the most important factors affecting soil splash erosion rate. The aim of the present study was to evaluate various salinity and alkalinity levels on splash erosion rate and its components (upslope, down slope and total splash) in different slopes. A factorial experiment with three factors was conducted in a completely randomized design with three replications by a Multiple Splash Set (MSS). The treatments included splash erosion rate at 4 levels of salinity and alkalinity (EC: 2 dSm-1, SAR: 2، EC: 15, SAR: 24 ،EC: 56, SAR: 42، EC: 113, SAR: 47), two levels of rainfall intensity (2.5 and 3.5 mm.min-1) and 5% and 15% slope levels. The results showed that the organic carbon and mean weight diameter (MWD) decreased at higher levels of salinity and alkalinity. The effect of saline and sodic, slope and rainfall intensity levels on the splash erosion rate and its components was significant. Also, slope×saline and sodic, rainfall intensity×saline and sodic, slope×saline and sodic×rainfall intensity interaction treatment caused a significant increase in splash erosion rate and its components. It seems that splash erosion is increased in saline and sodic soils due to the reduction in OC and MWD


S. A. M. Mirmohammady Maibody, S. Dybaie, H. Shariatmadari, N. Baghestani,
Volume 21, Issue 2 (8-2017)
Abstract

The adaptability of Haloxylon appilium to adverse environmental conditions and especially its capability for an appropriate establishment in saline and desert soils has introduced this plant as a suitable means for biological methods to stabilize sand dunes, control erosion and prevent desertification in arid regions. In order to evaluate the ecophysiological characteristics of Haloxylon appilium some characteristics of soils under the long term establishment, survival and development of this plant and ion composition of this plant growing in Yazd province in thirty two growing trees of similar ages and traits within 8 locations of Chah Afzal and Ashkezar were investigated and their height (H), crown diameter (CD) and the above ground biomass index (Yi) were measured. Also, after cutting the trees from their collars, soil profiles were dug underneath the tree locations and soil samples were taken at depths of 0-30, 30-60, 60-90 and 90-120cm from four sides of each profile. The samples were then analyzed for Electrical Conductivity (EC), pH and Cl, Na, Ca, Mg, K concentrations in 1:5 soil to water extracts. The results showed statistically significant differences in soil parameters between the two regions, except for pH and Mg concentrations. The ion concentration of the plants in the two regions showed statistically significant differences for only Cl in shoots and Ca in roots. Based on the plant growth indices the Chah Afzal and Eshkezar regions were respectively evaluated as suitable and unsuitable for Haloxylon appilium growth. In spite of a higher salinity, the higher Ca and K concentration and lower Na/K ratio of Chah Afzal soils may explain the better plant performance in this region against Eshkezar, however, comprehensive researches on application of Ca and K fertilizer are needed to confirm this hypothesis


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb