Search published articles


Showing 7 results for Arid Region

A Vaezi, H Bahrami, H Sadeghi, M Mahdian,
Volume 13, Issue 49 (10-2009)
Abstract

Proper evaluation of soil erodibility factor is very important in assessment of soil erosion. In this study, soil erodibility factor (K) was assessed in a zone, 900 km2 in area in Hashtrood, located in a semi-arid region in north west of Iran. Soil erodibility factor was measured at the unit plots under natural rainfall events in 36 different lands in the study area from March 2005 to March 2007. Results indicated that the measured soil erodibility factor K is on average 8.77 times lower than the nomograph-based values in the study area. To achieve a new nomograph, correlation between measured soil erodibility and soil physicochemical properties was studied. Based on the results, soil erodibility factor negatively correlated with coarse sand, clay, organic matter, lime, aggregate stability and permeability, while its correlation with very fine sand and silt was positive. Results of principal component analysis of soil properties and multi-regression analysis showed that the soil erodibility factor is significantly (R2 = 0.92, P < 0.001) related to soil permeability, aggregate stability, lime and coarse sand. A new nomograph with a R2 of 92% was developed based on these properties to easily estimate soil erodibility factor in the study area. The soil erodibility factor can be reliably estimated using the nomograph in all regions with the soil and rain properties similar to those in the study area.
Majid Hejazi Mehrizi, Hossein Shariatmadari, Majid ََafyuni,
Volume 17, Issue 64 (9-2013)
Abstract

Application of sewage sludge has been considered as an organic fertilizer in arid and semi-arid regions of Iran. This study was conducted to investigate cumulative and residual effects of sewage sludge on soil inorganic fractions and their relation to phosphorus (P) availability. Two levels of application (50 and 100 Mg ha-1) and three consecutive times of sewage sludge application (1, 3 and 5 years) with a control treatment were studied in a randomized complete block split plot design with three replications. Composite soil samples were collected from 0-30 depth at the end of 5th year of application. Increasing the rate and application year of sewage sludge enhanced dicalcium phosphate (Ca2-P), octacalcium phosphate (Ca8-P), apatite (Ca10-P), aluminum phosphate (Al-P), iron phosphate (Fe-P) and available P but decreased occluded P (OC-P). Residual effect of sewage sludge application resulted in increased inorganic fractions in blocks treated for 1 year compared to control. Positive correlations were observed between inorganic P fractions and Olsen P, wheat yield and P uptake (except OC-P). We concluded that inorganic P fractions and P availability increased in sewage sludge amended soil.
M. Bahmani, M.h Salehi, I. Esfadiarpoor,
Volume 18, Issue 67 (6-2014)
Abstract

One of the main objectives of soil classification systems is to identify the differences of soil properties for management purposes. In this study, the efficiency of American and WRB soil classification systems were compared in order to describe some of soil physical, chemical and mineralogical properties in arid and semiarid regions of central Iran. Khatoon-Abad and Mobarekeh plains as arid regions and Koohrang and Shahrekord plains as semiarid regions were selected. Then, representative pedons of each plain were chosen from 16 excavated pedons and soil samples were taken from the genetic horizons to determine soil classification. Results showed that soil orders of both Koohrang and Khatoon-Abad plains are vertisols according to American soil classification system whereas based on WRB system, these soils are classified as cambisols and calcisols, respectively. On the other hand, both Mobarekeh and Shahrekord soils are classified as calcisols in WRB system whereas these soils are classified as aridisols and inceptisols, respectively, according to American soil taxonomy. None of soil classification systems could show the existence of gypsum in horizons lower than 100 cm of the soil surface for Mobarekeh soil. Clay mineralogy indicates that smectite is the dominant clay mineral in Koohrang soil as explains well at the family level of American soil classification system. Results suggest that WRB has somewhat higher efficiency rather than American soil classification system for the studied soils.
A. R. Vaezi, M. Ahmadi,
Volume 21, Issue 3 (11-2017)
Abstract

Modified Universal Soil Loss Equation (MUSLE) is one of soil loss estimation models which has been developed based on the runoff characteristics in the event scale. However, it needs to be evaluated in the plot scale for the semi-arid rainfall events. With this aim, a field study was designed using twenty one plots. Runoff and soil loss were measured using 5-min samples under seven rainfall intensities consisted of 10, 20, 30, 40, 50 60, and 70 mm h-1 for 60 min. Soil loss was estimated using the MUSLE based on the runoff volume (Q) and runoff peak discharge (qp) and the values were compared with the observed values. The estimated soil loss was about 3.89 times bigger than the observed value on average. In order to improve model estimations, the power of rainfall erosivity index was modified from 0.56 to 0.62, (Q qp)0.62. The modification of the MUSLE model improved model efficiency (ME) from -5.5 to 0.47 and decreased the root mean square error from 0.000137 to 0.000031. This study revealed that the MUSLE overestimates soil loss from the small plots in the semi -arid regions. Therefore it is essential to calibrate runoff erosivity index using the data observed in the area. The modified MUSLE can be reliably used to predict soil loss in the small plot scale in semi-arid regions.
 


A. R. Vaezi, S. Rezaeipour, M. Babaakbari,
Volume 23, Issue 3 (12-2019)
Abstract

Limited information is available on the effect of residues rates and slope direction on dryland wheat
(Triticum aestivum L.) yield.  This study was carried out to determine the effects of residues rates and tillage direction on grain yield and yield components of the Sardary wheat in a dryland region in Zanjan. Five wheat residues rates (0, 25, 50, 75 and 100% surface cover) were applied and incorporated into soil in two slope directions (along the slope and on contour lines) using the randomized complete blocks design with three replications in a land with 10% slope steepness. Overall, thirty plots with 2m × 5 m dimensions were installed in the field and wheat grain yield and yield components were determined for growth period from 2015-2016. Results indicated that grain yield and yield components were significantly affected by the residues rates and slope direction and their interaction. In contour tilled plots, wheat grain yield (1.78 to per hectare), thousand grain weight (42.26 kg) and wheat height (55.11 cm) were 5.32, 5.01, 16.19 and 1.36 percent more than the plots tilled along the slope. The highest grain yield was found in 75% of residue (2.45 ton per hectare) under contour line direction which was about 53% bigger than control treatment (0% straw mulch) under along the slope. This study indicated that the application of straw mulch before cultivation and incorporating into soil using contour line tillage are proper soil management methods to obtain higher wheat yield in this dryland region.

Zahra Shahrokhi, M. Zare, A. Mirmohammadi Maybodi, F. Arabi Aliabad,
Volume 23, Issue 3 (12-2019)
Abstract

Droughts are natural events and could lead to declining surface water quality of regional basin. Understanding the complex impacts of drought may help authorities to monitor changes in different regional basin and to make appropriate decision on development of a river basin management plan. In this study 20 years annual precipitation time series from 1994-2013 from 7 synoptic weather stations located in the Halil-Rood basin were analysed using both Standard Precipitation Index (SPI) and Reconnaissance Drought Index (RDI) and then dry (-1.35 to -1.75) and wet years (1/7 to 2.45) were determined by model simulation studies. Several climate based drought indices and remotely sensed based drought indices were used for monitoring and evaluating of drought. The impact of drought on the water quality parameters in the study area was evaluated. Results showed that there was significant relationship between most of the examined water quality parameters (Ca2+, Mg2+, HCO3-, SO42+, Na+, total dissolved solids TDS, SAR) and drought, however there was no significant relationship between water pH and drought. The study indicated that focus on the drought indices might be helpful as a tool in improving surface water resources management under drought condition and may promote sustainable water resources utilization and management in the study area. Also, dividing the Halil-Rood basin into several homogeneous regions is recommended for future studies to prepare a better ground for studying the effect of drought on the quality of water at a regional scale.

Z. Ebrahimikhusfi,
Volume 24, Issue 1 (5-2020)
Abstract

The purpose of this study was to analyze the temporal variations of dust phenomenon and its relationship with the climatic elements in Yazd city, located near one of the critical centers of dust production in the center of Iran. For this purpose, the Dust Storm Index was first calculated. After the standardization of precipitation, temperature, maximum wind speed, average wind speed, relative humidity and, dust storm index, the co-linearity effect between variables was calculated by using inflation variance factor. Then, several regression models were prepared based on the optimal Ridge parameter. The performance of the models was evaluated based on the determination coefficient, F value and Root Mean Square Error. Finally, by using the most accurate model, the impact of climate parameters on the dust events changes was determined. The results showed that the incidence of dust events in the spring was more than the rest of the year. Based on the optimal model (Model 12), it was found that the main factor influencing the dust storm index variations in different seasons was the surface winds speed. It was also shown that 39%, 25%, 46% and 31% of dust storm index changes in winter, spring, summer, and autumn were due to the interaction of the five climatic parameters studied in this study.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb