Search published articles


Showing 21 results for Artificial Neural Network

A. R. Massah Bavani, S. Morid,
Volume 9, Issue 4 (1-2006)
Abstract

In this study the impact of climate change on temperature, rainfall and river flows of the Zayandeh Rud basin under two climate change scenarios for two periods (2010-2039 and 2070-2099) are investigated. For the evaluation of future climate change impact on stream flow to Chadegan reservoir, the global circulation model (GCM) outputs of the HadCM3 model (monthly temperature and precipitation) with two scenarios, A2 and B2, are obtained and downscaled to the local level for the selected time periods. The results indicate that the annual average of precipitation decreases and temperature increases for both periods that are more pronounced for the period 2079-2099. Such that 10% to 16% decrease in precipitation and 3.2 to 4.6ºC increases in temperature can be anticipated for scenarios A2 and B2, respectively. To predict future stream flow changes due to climate change, artificial neural networks (ANNs) have been applied and trained by the several input models and architectures for rainfall-runoff simulation. The results indicate that the maximum of 5.8% decrease in the annual flows. Comparison of the two scenarios indicates the more critical situation in scenario A2 for the basin.
B. Najafi, M. Zibaei, M. H. Sheikhi, M. H. Tarazkar,
Volume 11, Issue 1 (4-2007)
Abstract

In this study wholesale prices of selected crops, namely, tomato, onion and potatoes in Fars province were predicted for various time horizons by using common methods of forecasting and artificial neural networks (ANN). Monthly data from September 1998 to June 2005 period were obtained from Ministry of Jihad-e Agriculture. For comparing different methods data selected from September 1998 to December 2004 were utilized, and latest six - month data were mainly used to monitor the power of prediction. The MAE, MSE and MAPE criteria were used for comparing the ability of different forecasting methods. Results of this study showed that ANN had the lowest error in prediction of prices for one - to three - month periods, but for six - month prediction, all forecasting methods were not statistically different.
R Mohajer, M.h Salehi, H Beigi Herchegani,
Volume 13, Issue 49 (10-2009)
Abstract

Soil fertility measures such as cation exchange capacity (CEC) may be used in upgrading soil maps and improving their quality. Direct measurement of CEC is costly and laborious. Indirect estimation of CEC via pedotransfer functions, therefore, may be appropriate and effective. Several delineations of two consociation map units consisting of two soil families, Shahrak series and Chaharmahal series, located in Shahrekord plain were identified. Soil samples were taken from two depths of 0-20 and 30-50 cm and were analyzed for several physico-chemical properties. Clay and organic matter percentages as well as moisture content at -1500 kPa correlated best with CEC. Pedotransfer functions were successfully developed using regression and artificial neural networks. In this research, it seemed that one hidden layer with one node was sufficient for all neural networks models. The best regression model consisting of organic matter and clay variables showed R2=0.81 and RMSE=7.2 while best corresponding neural network with a learning coefficient of 0.3 and an epoch of 40 had R2=0.88 and RMSE=0.34. Data partitioning according to soil series and soil depths increased the accuracy and precision of the functions. Compared to regression, artificial neural network technique gave pedotransfer functions with greater R2 and smaller RMSE.
H Tabari, S Marofi, H Zare Abiane, R Amiri Chayjan, M Sharifi, A.m Akhondali,
Volume 13, Issue 50 (1-2010)
Abstract

In mountainous basins, snow water equivalent is usually used to evaluate water resources related to snow. In this research, based on the observed data, the snow depth and its water equivalent was studied through application of non-linear regression, artificial neural network as well as optimization of network's parameters with genetic algorithm. To this end, the estimated values by artificial neural network, neural network-genetic algorithm combined method and regression method were compared with the observed data. The field measurement were carried out in the Samsami basin in February 2006. Correlation coefficient (r) mean square error (MSE) and mean absolute error (MAE) were used to evaluate efficiency of the various models of artificial neural networks and nonlinear regression models. The results showed that artificial neural network and genetic algorithm combined methods were suitable to estimate snow water equivalent. In general, among the methods used, neural network-genetic algorithm combined method presented the best result (r= 0.84, MSE= 0.041 and MAE= 0.051). Of the parameters considered, elevation from sea level is the most important and effective to estimate snow water equivalent.
H Faghih ,
Volume 14, Issue 51 (4-2010)
Abstract

Estimating spatial distribution of precipitation is vital to execute water resources plans, drought, land-use plans environment, watershed management, and agricultural master plans. High variation in amount of precipitation in various parts, lack of measurement stations, and the complexity of relationship between precipitation and parameters affecting it have doubled the importance of developing efficient methods in estimating spatial distribution of precipitation. Artificial neural network has been proved to be efficient as a new way for modeling and predicting the processes for which no solution and explicit relationship has been available in accurately identifying and describing them. The purpose of this study is to investigate the efficiency of artificial neural network in estimating spatial monthly precipitation. To achieve this objective, neural network with multilayer perceptorn topology was employed for preparing model for spatial monthly precipitation in five synoptic and rain-gauge stations located in Kurdistan province. In order to design the topology of the model in each station, as the adjustable parameters (including transfer function, learning rule, amount of momentum, number of hidden layers, number of neurons of the hidden layers, and the number of epochs) changed, different neural networks were made and carried out. In each case, the topology with the minimum amount of root mean square error (RMSE) was selected as the optimal model. Owing to the fact that the selection of each of the variable parameters of neural network necessitated recurring trails and errors, and consequently teaching a large number of networks with various topologies, genetic algorithm method was utilized for finding the optimization of these parameters the efficiency of this method, too, was examined in terms of the optimization of neural network. The findings indicated that neural network enjoys a high degree of accuracy in modeling and estimating spatial distribution of monthly precipitation. In addition, combining it with genetic algorithm method was positively evaluated in optimizing the requirements for executing neural network. In most cases, mixed method proved its superiority over executing neural network without optimization. The most precise model in all of the stations under study was achieved by the use of transfer function, sigmoid, learning rule of Levenberg Marquardt in the selected models, the determination coefficient (R2) observed between the model output amounts and the data observed in station were found to be 0.86 0.89 0.94 0.77 and 0.94.
Afkhami, Dastorani, Malekinejad , Mobin,
Volume 14, Issue 51 (4-2010)
Abstract

Drought is a natural feature of the climate condition, and its recurrence is inevitable. The main purpose of this research is to evaluate the effects of climatic factors on prediction of drought in different areas of Yazd based on artificial neural networks technique. In most of the meteorological stations located in Yazd area, precipitation is the only measured factor while generally in synoptic meteorological stations in addition to precipitation some other variables including maximum and mean temperature, relative humidity, wind speed, dominant wind direction and the amount of evaporation are also available. In this research it was tried to evaluate the role of the type and number of meteorological factor (as inputs of ANN model) on accuracy of ANN based drought prediction. Research area is a part of Yazd province containing only one synoptic and 13 non-synoptic meteorological stations. Three-year moving average of monthly precipitation was the main input of the models in all stations. The type of ANN used in this study was time lag recurrent network (TLRN), a dynamic architecture which was selected by evaluation of different types of ANN in this research. What was predicted is the three-year moving average of monthly precipitation of the next year, which is the main factor to evaluate drought condition one year before it occurs. For the Yazd synoptic meteorological station, several combinations of input variables was evaluated and tested to find the most relevant type of input variables for prediction of drought. However, for other 13 stations precipitation data was the only variable to use in ANN models for this purpose. Results in all stations were satisfactory, even where only one input (precipitation) was used to the models, although the level prediction accuracy was different from station to station. Result taken from this research, indicates high flexibility of ANN to cope with poor data condition where it is difficult to get acceptable results by most of the methods.
M. Shadmani, S. Marofi,
Volume 15, Issue 55 (4-2011)
Abstract

In this research, based on the observed data of Class A pan evaporation and application of non-linear regression (NLR), artificial neural network (ANN), neuro-fuzzy (NF) as well as Stephens-Stewart (SS) methods daily evaporation of Kerman region was evaluated. In the cases of NLR, ANN and NF methods, the input variables were air temperature (T), air pressure, relative humidity (RH), solar radiation (SR) and wind speed (U2) which were used in various combinations to estimate daily pan evaporation (Ep) defined as output variable. Performance of the methods was evaluated by comparing the observed and estimated data, using determination coefficient (R2), root mean square error (RMSE) and mean absolute error (MAE). Based on the observed data at Kerman meteorological station, the monthly and annual average evaporation values of the region were 272 and 3263 mm, respectively. The results of this study indicated that NF method is the most suitable method to estimate daily Class A pan evaporation. The statistics criteria of this model which is constituted based on the 5 input parameters were R2 = 0.85, RMSE=1.61 and MAE= 1.24 mm day-1. The sensitivity analysis of NF model revealed that the estimated EP is more sensitive to T and U2 (as the input variables), respectively. Due to weak accuracy of SS method, a new modification step of the model was also developed based on the SR and T in order to have a more exact daily evaporation estimation of the region. However, the result of the modified model was not acceptable
M. Gholamzadeh, S. Morid, M. Delavar,
Volume 15, Issue 56 (7-2011)
Abstract

Application of drought early warning system is an important strategy for drought management. It is more pronounced in the arid regions where dams have vital role to overcome water shortages. This papers aims to develop and apply such a system that includes three main components, which are 1) drought monitoring, 2) forecasting inflows and water demands and 3) calculation of a warning index for decision about drought management. The system is presented for the Zayanderud Dam. For this, the future six months river inflows and demands are forecasted at different probabilistic levels using the artificial neural networks and considering respected uncertainties. Also, five drought levels are indicated based on the historical records of dam’s storage and the self organizing feature map technique. Furthermore, a drought alert index (DAI) is defined using current storage of dam and the forecasted flows and demands. Finally, the different alert levels are estimated, which vary from normal to sever water scarcity. The results showed that application of the designed warning system can have effective role in the dam’s operation, rationing policy and reducing drought losses.
K. Bayat, S. M. Mirlatifi,
Volume 16, Issue 61 (10-2012)
Abstract

Global solar radiation (Rs( on a horizontal surface in the estimation of evapotranspiration of plants and hydrology studies is an important factor. Average daily global solar radiation on a horizontal surface was estimated by artificial neural networks (ANNs) and five empirical models including FAO (No.56), Hargreaves-Samani, Mahmood-Hubard, Bahel and Annandale. The weather data was selected from Karaj, Shiraz, and Ramsar weather stations, which have arid, semi arid and very humid climates (based on De Martonne classification). Daily solar radiation was measured at the three sites selected. The ANN, with actual duration of sunshine and maximum possible duration of sunshine as input parameters, generated daily solar radiation estimates with highest level of accuracy among all models tested. Rs estimates by ANNs with only temperature indices as input and by Hargreaves-Samani, Annandale and Mahmood-Hubard, which are all temperature oriented models, had lower accuracy at all three sites. In contrast, ANNs with actual duration of sunshine and maximum possible sunshine hours as inputs in Karaj, Shiraz and Ramsar station with root mean square error (RMSE) of 2.08, 1.85 and 2.05 Mj m-2 day-1 respectively were the best models. After ANNs, FAO-56 model which is based on sunshine hours produced results closer to the measured values. Rs estimates by ANNs with only temperature indices as input and by Hargreaves-Samani, Annandale and Mahmood-Hubard which are all temperature oriented models, had lower accuracy at all the three sites. These models are not appropriate for estimating daily global solar radiation.
B. Khalili Moghadam, M. Afyuni, A. Jalalian, K. C. Abbaspour, A. A. Dehghani,
Volume 19, Issue 71 (6-2015)
Abstract

With the advent of advanced geographical informational systems (GIS) and remote sensing technologies in recent years, topographic (elevation, slope, and aspect) and vegetation attributes are routinely available from digital elevation models (DEMs) and normalized difference vegetation index (NDVI) at different spatial (watershed, regional) scales. This study explores the use of topographic and vegetation attributes in addition to soil attributes to develop pedotransfer functions (PTFs) for estimating soil saturated hydraulic conductivity in the rangeland of central Zagros. We investigated the use of artificial neural networks (ANNs) in estimating soil saturated hydraulic conductivity from measured particle size distribution, bulk density, topographic attributes, normalized difference vegetation index (NDVI), soil organic carbon (SOC), and CaCo3 in topsoil and subsoil horizon. Three neural networks structures were used and compared with conventional multiple linear regression analysis. The performances of the models were evaluated using spearman’s correlation coefficient (r) based on the observed and the estimated values and normalized mean square error (NMSE). Topographic and vegetation attributes were found to be the most sensitive variables to estimate soil saturated hydraulic conductivity in the rangeland of central Zagros. Improvements were achieved with neural network (r=0.87) models compared with the conventional multiple linear regression (MLR) model (r=0.69).


M. Hayatzadeh, J. Chezgi, M.t. Dastorani,
Volume 19, Issue 72 (8-2015)
Abstract

Since the development of surface water control needs accurate access to flow behavior of sediment rates, the lack of sediment measurement stations, the novelty of most stations and the lack of statistics on the deposit make it difficult to properly evaluate and simulate the flow behavior and their sediments. In a watershed, the morphological characteristics and sediment load of flow affect each other. It is, thus, important to know about the extent of this relationship to manage and control the flow in downstream areas. In the present study, using artificial neural networks and sediment rating regression methods based on the data from 136 events and also morphological parameters, we have attempted to predict the sediment load of Bagh Abbas basin. In the first step, we used flow data to predict the sediment load of both methods, and then basin morphological characteristics such as the compactness factor and form factor were added to the models. The results of this study showed that by using neural networks of Multilayer Perceptron (MLP) type with Levenberg – Marquardt algorithm and the stimulation function of tangent Sigmoid with two hidden layers and four neurons in each layer, we can predict suspended sediment discharge rate with a sufficient accuracy. Accuracy of the results obtained from the ANN method was higher than the accuracy of rating curve method. In the evaluation of NGANN & GANN network methods and SRC & MARS regression methods, correlation coefficients were respectively calculated as 0.94, 0.93, 0.767, 0.766, and root mean square errors (RMSE), 0.45, 0.49, 2.3 and 2.3. Nash coefficient (NS) was calculated respectively as 0.71, 0.58, 0.27 and 0.23. Therefore, the most efficient method among the four models is artificial neural network combined with morphological data (GANN). Furthermore, the findings of the study show that adding geomorphological parameters to sediment rating has little effect on the model performance.


,
Volume 20, Issue 78 (1-2017)
Abstract

Due to water shortage in country, more accurate estimate of water reserve can be one of the most important guidelines on the optimal management of water resource and cycle for development of water productivity efficiency. Therefore, using artificial neural network techniques the water supply of 174 fallen trees from different species was simulated. From any part of each bole, components of constant volume were extracted and placed in 105ºC to be oven-dried to measure specific drought index and wood density. Three input layers of diameter at breast height, height and specific wood density were used to simulate the response variable. The method of trial and test were used for neural network topology architecture. The results showed that the use of only diameter as input layer based on the validation indices explained 65% of variance of test of data. Using the three layers in the neural network, optimized output including function of Tan-sigmoid in the designed architecture with the number of 15 neurons demonstrated the highest accuracy (R2=0/92, MSE= 0/001, RMSE=81/08). In order to save the costs and manpower and to avoid a destructive method, the optimized output in the form of black box has the wide applicability to predict the water reserve in the mixed-beech forests to manage water cycle in the studied ecosystem.


M. Hayatzadeh, M. R. Ekhtesasi, H. Malekinezhad, A. Fathzadeh, H. R. Azimzadeh,
Volume 21, Issue 1 (6-2017)
Abstract

Soil erosion is undoubtedly one of the most important problems in natural areas of Iran and has destructive effects on different ecosystems. Considering that calculation of the sediment rate in sediment stations and direct measurements of erosion process is costly and difficult, it is critical to find ways to accurately estimate the amount of sediment yield in catchments especially in arid and hyper arid areas because of their high ecological sensitivity. One of the most commonly used methods in these areas is the sediment rating regression method. Therefore, in this study sediment observed data for 48 events (the corresponding discharge and sediment) in a 23-year period from Fkhrabad basin (Mehriz) were compared to the estimated data obtained from Multi-line rating method, extent middle class, middle class rating curve with correction factor QMLE, SMEARING correction coefficient FAO and Artificial Neural networks (ANNs). Finally, the accuracy of these methods were assessed using different evaluation criteria such as Root Mean Square Error (RMSE), coefficient of determination (R2) and the standard Nash (ME). Results showed that ANN outperformed the other methods with the RMSE, R2 and ME of 203.3, 0.86 and 0.66, respectively. The results suggest that these methods should be used cautiously in estimating the suspended sediment load in arid and hyper arid regions due to the nature of the observed data and temporal and seasonal flow systems in these regions. It was also indicated that the artificial neural network models have higher flexibility than other methods which makes them to be useful tools for modeling in poor data conditions.
 


M. Sadeghian, H. Karami, S. F. Mousavi,
Volume 21, Issue 4 (2-2018)
Abstract

Nowadays, greater recognition of drought and introducing its monitoring systems, particularly for the short-term periods, and adding predictability to these systems, could lead to presentation of more effective strategies for the management of water resources allocation. In this research, it is tried to present appropriate models to predict drought in city of Semnan, Iran, using time series, adaptive neuro-fuzzy inference system (ANFIS) and artificial neural networks (MLP and RBF). For these modeling processes, average monthly meteorological parameters of rainfall, temperature, minimum temperature, maximum temperature, relative humidity, minimum relative humidity, maximum relative humidity and SPI drought index were used during the period 1966 to 2013. The results showed that among the many developed models, the ANFIS model, with input data of average rainfall, maximum temperature, SPI and its last-month value, 10 rules and Gaussian membership function, showed appropriate performance at each stage of training and testing. The values of RMSE, MAE and R at training stage were 0.777, 0.593 and 0.4, respectively, and at testing stage were 0.837, 0.644 and 0.362, respectively. Then, the input parameters of this model were predicted for the next 12 months using ARIMA model, and SPI values were predicted for the next 12 months. The ANN and time series methods with low difference in error values were ranked next, respectively. The input parameters SPI and temperature had better performance and rainfall parameter had weaker performance.

M. Isazadeh, P. Mohammadi, Y. Dinpazhoh,
Volume 21, Issue 4 (2-2018)
Abstract

Statistical analysis and forecast discharge data play an important role in management and development of water systems. The most fundamental issues of statistical analysis and forecast discharge in Iran are lack of data in long term period and lack of stream flow data in gauging stations. Considering the issues mentioned in this study, we tried to estimate the daily data flow (runoff) of Santeh gauging station in Kordestan province using the nearby hydrometric and meteorological stations data. This estimation occurred based on the sixteen different input combinations, including data of daily flow of hydrometric stations Safakhaneh and Polanian and daily runoff in Santeh precipitation gauging station. In this research, the daily flow estimation of the Santeh station in each of the months of the year was evaluated for sixteen different combinations and artificial neural network models and multiple linear regressions. The performance of each model was evaluated with the indicators RMSE, CC, NS and t-student statistic. The results showed good performance of both models but the performance of the artificial neural network model was better than the regression model in estimation of the daily runoff in the most months of the year. Mean error of artificial neural network and multiple linear regression models was respectively estimated as 6.31 and 8.07 m3/s in the months of the year. It should be noted that the artificial neural network, for each sixteen combination used, had better result than the regression model.

M. Pourmirza, A. Kamanbedast,
Volume 23, Issue 4 (12-2019)
Abstract

Occurrence of local scour is one of the most significant causes of damage to the pipes. Therefore, safe and economical design of pipes in the flow path requires a good estimate. In this study, based on the important and effective parameters in the scouring phenomenon, in order to develop educational patterns according to the data obtained in the laboratory of Ahvaz Islamic Azad University, models based on artificial neural networks were created with the NeuroSolution5 software. MLP, GFF and RBF were the models used in this study; after comparing, MLP was selected as the basis for our study. Finally, the effect of each parameter on scouring was determined using the  artificial neural networks technique, based on which the  shields parameter with a very high effect (more than 95 percent) was determined as one of the most effective causes of the local scour.

S. H. Roshun, K. Shahedi, M. Habibnejad Roshan, J. Chormanski,
Volume 25, Issue 2 (9-2021)
Abstract

The simulation of the rainfall-runoff process in the watershed has particular importance for a better understanding of hydrologic issues, water resources management, river engineering, flood control structures, and flood storage. In this study, to simulate the rainfall-runoff process, rainfall and discharge data were used in the period 1997-2017. After data qualitative control, rainfall, and discharge delays were determined using the coefficients of autocorrelation, partial autocorrelation, and cross-correlation in R Studio software. Then, the effective parameters and the optimum combination were determined by the Gamma test method and used to implement the model under three different scenarios in MATLAB software. Gamma test results showed that today's precipitation parameters, precipitation of the previous day, discharge of the previous day, and discharge of two days ago have the greatest effect on the outflow of the basin. Also, the Pt Qt-1 and Pt Pt-1 Qt-1 Qt-2 Qt-3 combinations were selected as the most suitable input combinations for modeling. The results of the modeling showed that in the support vector machine model, the Radial Base kernel Function (RBF) has a better performance than multiple and linear kernels. Also, the performance of the Artificial Neural Network model (ANN) is better than the Support Vector Machine model (SVM) with Radial Base kernel Function (RBF).

F. Zarif, A. Asareh, M. Asadiloor, H. Fathian, D. Khodadadi Dehkordi,
Volume 26, Issue 2 (9-2022)
Abstract

An accurate and reliable prediction of groundwater level in a region is very important for sustainable use and management of water resources. In this study, the generalized feedforward (GFF) and radial basis function (RBF) of artificial neural networks (ANNs) have been evaluated for monthly predicting groundwater levels in the Dezful-Andimeshk plain in southwestern Iran. The partial mutual information (PMI) algorithm was used to determine efficient input variables in ANNs. The results of using the PMI algorithm showed that efficient input variables for monthly predicting groundwater level for piezometers affected by water discharge and recharge include only water level in the current month. Also, efficient input variables for predicting the water level for piezometers affected only by water discharge include the water level in the current month, the water level in the previous month, the water level in the previous two months, transverse coordinates of piezometers to UTM, the water level in the previous three months, the water level in the previous four months, the water level in the previous five months and longitudinal coordinates of piezometers to UTM. In addition, efficient input variables of monthly predicting groundwater level for piezometers neither affected by water discharge nor water recharge, respectively, include the water level in the current month, the water level in the previous month, the water level in the previous two months, the water level in the previous three months, the water level in the previous four months, the water level in the previous five months, the water level in the previous six months, transverse coordinates of piezometer to UTM and longitudinal coordinates of piezometer to UTM. The results indicated that the GFF network is more accurate than the RBF network for monthly predicting groundwater level for piezometers including water discharge and recharge and piezometers including only water discharge. Also, the RBF network is more accurate for monthly predicting groundwater levels for piezometers that include neither water discharge nor recharge than the GFF network.

M. Seifollahi, S. Abbasi, M.a. Lotfollahi-Yaghin, R. Daneshfaraz, F. Kalateh, M. Fahimi-Farzam,
Volume 26, Issue 2 (9-2022)
Abstract

Unpredictable settlement of earth dams has led researchers to develop new methods such as artificial neural networks, wavelet theory, fuzzy logic, and a combination of them. These methods do not require time-consuming analyses for estimation. In this research, the amount of settlement in rockfill dams with a central core has been estimated using artificial intelligence methods. The data of 35 rockfill dams with a central core were used to train and validate the models. The artificial neural network, wavelet transform model, and fuzzy-neural adaptive inference system are the proposed models which were used in the present study. According to the results, the best model for an artificial neural network had two hidden layers, the first layer of 18 neurons and the second layer of 7 neurons, with the Tansig-Tansig activation function, with a coefficient of determination R2=0.4969. The best model for the fuzzy-neural inference system had the ring function (Dsigmoid) as a membership function, with three membership functions and 142 repetitions with a coefficient of determination R2=0.2860. Also, combining wavelet-neural network conversion with the coif2 wavelet function due to the more adaptation this function has to the input variables, the better the performance, and this function, with a coefficient of determination R2=0.9447, had the highest accuracy compared to other models.

B. Shahinejad, A. Parsaei, A. Haghizadeh, A. Arshia, Z. Shamsi,
Volume 26, Issue 3 (12-2022)
Abstract

In this research, soft computational models including multiple adaptive spline regression model (MARS) and data group classification model (GMDH) were used to estimate the geometric dimensions of stable alluvial channels including channel surface width (w), flow depth (h), and longitudinal slope (S) and the results of the developed models were compared with the multilayer neural network (MLP) model. To develop the models, the flow rate parameters (Q), the average particle size in the floor and body (d50) as well as the shear stress (t) as input and the parameters of water surface width (w), flow depth (h), and longitudinal slope (S) were used as output parameters. Soft computing models were developed in two scenarios based on raw parameters and dimensionless form independent and dependent parameters. The results showed that the statistical characteristics in estimating w, the best performance is related to the MARS model, whose statistical indicators of accuracy in the training stage are R2 = 0.902, RMSE=1.666 and in the test phase is R2 = 0.844, RMSE=2.317. In estimating the channel depth, the performance of both GMDH and MARS models is approximately equal, both of which were developed based on the dimensionless form of flow rate as the input variable. The statistical indicators of both models in the training stage are R2 » 0.90, RMSE » 8.15 and in the test phase is R2 » 0.90, RMSE = 7.40. The best performance of the developed models in estimating the longitudinal slope of the channel was related to both MARS and GMDH models, although, in part, the accuracy of the GMDH model with statistical indicators R2 = 0.942, RMSE = 0.0011 in the training phase and R2 = 0.925, RMSE = 0.0014 in the experimental stage is more than the MARS model.


Page 1 from 2    
First
Previous
1
 

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb