A. Dariaee, M. Falahati Rastegar, B. Jafarpour,
Volume 5, Issue 4 (1-2002)
Abstract
This study was carried out on the biochemical aspects of chickpea cultivars and the genomic behavior of A. rabiei pathotypes 4 and 6 in four parts: 1) Determining the number of resistant genes in chickpea native cultivars, 2) Comparing the variation of sodium and potassium electrolytes concentrations in noninfected and infected seedling stems of resistant and susceptible cultivars, 3) Studying the effect of potassium deficiency on five differential cultivars by Hoagland nutrient culture, and 4) Using RAPD-PCR method to detect any genomic differences between the two pathotypes used in this study.
Eighteen native chickpea cultivars were chosen for this study. The result of the experiments showed that cultivar 1-60-144 possesses the highest number of resistant genes, while the others were either relatively tolerant or susceptible. The reduction of electrolytes concentration in infected cultivar ILC-1929 in comparison to resistant cultivar ILC-5928 is an indication of compatibility between the host plant and the pathogen. Increasing the level of resistance in differential cultivars and appearance of induced resistance as the result of potassium deficiency is due to the production of putrecine diamine. Eighty percent similarity of pathotypes genomic bands by using CG marker and primer 171 showed insufficient primer numbers and the necessity for using complementary methods.
H. Fallahi, M. Motallebi, M.r. Zamani,
Volume 10, Issue 4 (1-2007)
Abstract
Ascochyta blight caused by Ascochyta rabiei is one of the major diseases of chickpea (Cicer arientinum) in Iran. Many phytopathogenic microorganisms, incuding A .rabiei, attack their host plant by secreting pectic enzymes including polygalacturonase (PG) which causes modification of cell-wall structure, increasing accessibility of cell-wall components for degradation by other enzymes. Polygalacturonase is the major factor in the initiation of Ascochyta blight disease, therefore in this study, the enzyme was purified from a virulent isolate of A .rabiei (IK06). Fungi were cultured in PZ medium culture media were harvested and after dialysis used for purification. Purification was achieved by Carboxy Methyl Sepharose Fast Flow ion exchange column equilibrated to pH= 5.5. Zero to one molar NaCl gradient was used for elution of the proteins from the column. Determination of protein content and enzyme activity of each fraction showed that PG was eluted from the column in 0.3 to 0.4 M salt. The purity of the protein and the MW of the enzyme were determined using SDS-PAGE technique. The MW was found to be around 27 KDa. The activity of the purified protein was also evaluated using polyacrylamide gel containing pectin as substrate (zymogram gel). Optimum pH for the purified enzyme was 7.5.