Search published articles


Showing 7 results for Available Phosphorus

M. Pakdel, J. Pourreza, S. Ansari,
Volume 7, Issue 3 (10-2003)
Abstract

In a 3×3 factorial experiment, 90 72-week-old native breeder hens of Isfahan were kept in cages (one bird/cage). The effect of three levels of dietary calcium (3.27, 2.62, and 1.96%) and three levels of dietary available phosphorus (0.25, 0.20, and 0.15%) on egg production and egg shell traits were investigated. Each treatment contained five replicates of two birds (10 birds per treatment). The experimental diets were fed 8 weeks (from 72 to 80 weeks of age). Dietary calcium and available phosphorus levels had no significant effects on feed consumption, shell thickness and shell breaking strength. Decreasing dietary calcium or available phosphorus levels (1.96% calcium and 0.15% available phosphorus) caused a significant (P<0.05) linear increase in egg production, egg weight and improvement in feed conversion. The results from this study showed that high egg production, maximum calcium retention in the shell and optimum feed conversion were observed in native breeder hens during late growing period with 1.96% calcium and 0.15% available phosphorus.
M. Hajian Shahri, M. Abbasi,
Volume 8, Issue 4 (1-2005)
Abstract

In order to investigate variations of spore population, root colonization and also to determine mycorrhizal symbiosis in the root and rhizosphere of Pistachio trees (Pistacia vera) in natural forests, two study stations in Kalat (Chachaeh) and Sarakhs (Shorlogh) regions were selected. Sampling from soil and root of the trees were taken from under the canopy and from a depth of 30 cm. On a monthly basis. The roots were stained and the colonization rate and the variations of spore population were measured. Some soil characteristics including pH, moisture, organic material percentage and available phosphorus were determined, The correlation coefficients between the measured factors were calculated. The results indicated that vesicular – arbuscular mycorrhiza (VAM) was the only symbiotic mycorriza of pistachio trees. Average amounts of root colonization were 13% and 11% in Chahchaheh and Shorlogh stations, respectively. Also, average numbers of spores per 1 gram of dry soil in the above stations were 12 and 10, respectively. The correlation between the variation of spore population and colonization levels was positive but the correlation between spore population and soil moisture, organic material, available phosphorus and pH was negative.
A. R. Hoseinpur, H. Shariatmadari,
Volume 10, Issue 4 (1-2007)
Abstract

Hamadan province is one of the most important alfalfa (Medicago sativa) producing regions in Iran. However, little is known about P status in this region and no suitable extraction method has yet been introduced. This experiment was carried out to determine the available phosphorus by nine chemical extractants in some soils of the Hamadan region. The treatments consisted of 15 soils and 2 P levels (0 and 200 mg P kg-1 as Ca(H2PO4)2.H2O ) in a factorial experiment in a randomized design with three replications. Alfalfa plant were harvested in three cutting. The results indicated that the amount of extractable phosphorus decreased in the following order: Collwell>Bray 2>0.1 N HCl>Bray 1>Olsen>AB-DTPA>Mehlich 1>Mehlich 2 > 0.01 M CaCl2 The amounts of P extracted by all methods except that by 0.01 M CaCl2 method, showed significant correlation. The results of correlation studies showed that in the first cutting, Collwel method, in the second cutting AB-DTPA, Olsen, Collwel, Bray 1, Bray 2 and Mehlich 2 and in the third cutting, AB-DTPA, Olsen, Collwel, Bray 1, and Mehlich 2 methods seems to be suitable extractants for assessing available P of soils in Hamadan province.
A. Halajnia, G. H. Haghnia, A. Fotovat, R. Khorasani,
Volume 10, Issue 4 (1-2007)
Abstract

Study of phosphorus reactions over time and the role of organic matter in the calcareous soils are important for the development of P fertilizer and manure management practices. The objective of this study was to determine the effect of applied manure on P availability and its chemical forms in the soil, over time. Eight samples were collected from semi-arid calcareous soils of Mashhad plain. The samples were treated with two levels of inorganic P (0 and 300 mg P kg-1 soil as KH2PO4) and two levels of organic matter (0 and 1% cattle manure). The experiment was conducted in a completely randomized design with factorial arrangement. The treated soil samples were incubated for 2, 5, 10, 30, 60, 90 and 150 days, then analyzed for available P (Olsen-P). The result showed that only 17% of added phosphorus was available in P treatment at the end of experiment. In manure treated soils, this figure reached 34% for the same period of time. Application of manure along with P increased the recovery of applied P and CBD-P (Citrate-Bicarbonate-Dithionite). This may be due to the formation of P-organic complexes with Fe oxides. Application of manure in soil increased NaCl-NaOH-P considerably compared with P and P+OM treatments. It can be concluded that P originating from manure compared with inorganic-P may be more available for plants over the time.
N. Najafi, H. Towfighi,
Volume 18, Issue 67 (6-2014)
Abstract

Phosphorus behavior in waterlogged soils is significantly different from non-waterlogged soils. Changes in available phosphorus and inorganic phosphorus fractions after waterlogging in the paddy soils of north of Iran were studied in a laboratory research. A factorial experiment in a completely randomized design with two replications was performed with factors of soil at 14 levels (10 alkaline-calcareous and 4 non-calcareous or acid soils) and duration of waterlogging period at three levels (0, 30, 90 days). At the end of waterlogging period, phosphorus fractions in calcareous soils by Jiang and Gu method and in non-calcareous soils by Kuo method and available-P by Olsen method were determined. The results showed that the level of available-P in all soils was increased 90 days after waterlogging (on the average 2.3 times). In general, all P fractions were changed significantly after waterlogging and the amount of change was different depending on P fraction, soil type, and duration of waterlogging period. These results indicated the complex behavior of P in soils. The Al-phosphates were increased in 12 out of 14 calcareous and non-calcareous soils 90 days after waterlogging compared with air-dry soil. The Fe-phosphates were decreased in 9 out of 10 calcareous soils 90 days after waterlogging compared with air-dry soil while the effect of duration of waterlogging period on the Fe-phosphates in non-calcareous soils was not significant. The readily soluble-P in non-calcareous soils increased 30 and 90 days after waterlogging. The results indicated that some inorganic P fractions transformed into other fractions and probably organic P transformed into inorganic P during soil waterlogging period.
T. Raiesi, A. Hosseinpur,
Volume 19, Issue 71 (6-2015)
Abstract

The ability of different soil tests in predicting soil phosphorus (P) is important in soils amended with municipal sewage sludge. The objective of the present study was to evaluate several chemical extractants to estimate available P for bean growing in 10 calcareous soils amended with municipal sewage sludge from Chaharmahal-Va-Bakhtiari province under the greenhouse conditions. For this purpose, the soil samples were incubated with sludge at a rate of 39-ton sludge ha–1. The amount of available P of the soil samples was determined by Olsen, Colwell, ammonium bicarbonate-DTPA, 0.01 M calcium chloride, BrayІ, ІІ, Mehlich І and ІІ methods. A pot experiment in a completely randomized design was conducted to evaluate the bean plant indices. The results showed that the amount of extractable P with the above methods decreased in the following order: Colwell> Bray ІІ> Mehlich ІІ> Olsen> Ammonium bicarbonate DTPA> Mehlich І> Bray І> 0.01M chloride calcium. The extractable P with 0.01M chloride calcium, Mehlich І, ІІ Colwell and Olsen methods correlated significantly with plant indices (P concentration and P uptake). Thus, mentioned methods could be used to estimate plant-available P in the soils amended with sewage sludge.


M. Shirmohammadi, A. R. Hossein Pour, Sh. Kiani,
Volume 22, Issue 3 (11-2018)
Abstract

Understanding the distribution of different P forms in soil aggregate fractions is important in evaluating the risk of P run-off and leaching in the agricultural soils. The objective of the present research was to determine the effect of aggregate size on soil phosphorus availability and fractionation in 10 calcareous soils. Micro aggregate (< 0.25 mm), macro aggregate (> 0.25 mm) and whole soil were separated by dry sieving. Olsen P, total P, organic P, and inorganic P fractions in micro aggregate, macro aggregate, and whole soil were determined. Soil inorganic P fraction was  determined by a sequential extraction procedure including: dicalcium phosphate (Ca2-P), octa calcium phosphate (Ca8-P), apatite (Ca10-P), P absorbed by Al oxide (Al-P), P absorbed by Fe oxide (Fe-P) and P incorporated in to Fe oxide (O-P). The results showed that the amounts of (Olsen P), (Ca2-P), (Ca8-P), (Ca10-P), (Organic P), (Al-P), (Fe-P), (O-P) and (Total P) in 70, 60, 40, 40, 60, 70, 60, 50 and 70 percent of soils, respectively, in the micro aggregates were significantly higher than those of the macro ones. Finally, by increasing the P content, particularly the smaller sized aggregates, it was likely that the eroded material would favor greater P loss.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb