Search published articles


Showing 2 results for Azotobacter Chroococcum

S. Rajaee, H. A. Alikhani, F. Raiesi,
Volume 11, Issue 41 (10-2007)
Abstract

Azotobacter chroococcum is an important PGPR (Plant Growth Promoting Rhizobacteria) producing compounds needed for plant growth. The aim of this research was to study the effects of different native strains of Azotobacter chroococcum on growth and yield of wheat under greenhouse counditions. Seeds of spring wheat (Triticum aestivum L. var. Pishtaz) were inoculated with some Azotobacter chroococcum strains capable of producing IAA, HCN, sidrophore and fixing molecular nitrogen. The inoculation of wheat with those strains had a positive, significant effect on biological yield, seed protein percentage, thousand seed weight, leaf area, N, P, Fe and Zn uptake, in particular, by wheat. The increased growth of wheat was most likely due to the production of IAA and enhanced nitrogen fixation by inoculated strains. Some strains of Azotobacter chroococcum native to Chaharmahal va Bakhtiari are established as PGPR. Results also support the efficiency of Azotobacter chroococcum as an important biofertilizer in wheat cropping systems. The selected strains had a significant effect on wheat growth and yield, including biological yield and seed quality under greenhouse counditions. This beneficial effect of Azotobacter chroococcum on wheat is attributed mainly to IAA production and, to some extent to non symbiotic nitrogen fixation in the rhizosphere. So, these strains can potentially be used to improve wheat nutrition of micronutrients such as Fe and Zn, in particular.
L. Rahimi, N. Aliasgharzad, Sh. Oustan,
Volume 15, Issue 58 (3-2012)
Abstract

Azotobacter chroococcum can improve mineral nutrition of plants through N2 fixation and plant growth promoting capabilities. Fourteen strains of A. chroococcum were isolated from rhizosphere of wheat plants grown in different field conditions around Tabriz, northwest of Iran. In a pot culture experiment with sterile soil, wheat plants (Triticum aestivum cv. Falat) were inoculated with 14 bacterial strains. Positive control received nitrogen fertilizer without bacterial inoculation and the negative control was left un-inoculated and without N- fertilizer. Totally, 16 trearments with four replications were arranged in a completely randomized design. The plant growth indices and N and P concentrations of shoot and root were determined at the harvest time. Results showed that the inoculation with Azotobacter strains caused a significant increase in shoot and root dry weights. Bacterial inoculation significantly enhanced the concentration and content of N in shoot and root. Phosphorus content was only enhanced (p<0.05) in the root. Translocations of N and P from root to shoot were markedly increased in bacterial treatments compared to the positive and negative controls. Moreover, strains 1 and 48 which showed relatively higher phosphate solubilizing capability and phosphatase activity in in-vitro assay also brought about higher P content and concentration in shoot and its translocation from root to shoot.

Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb