Search published articles


Showing 5 results for Barley.

G. Fathi, M. Mojedam, S. A. Siadat, G. Noor Mohammadi,
Volume 5, Issue 4 (1-2002)
Abstract

Effects of different levels of nitrogen fertilizer and cutting time of forage on grain and forage yield of barley (Hordeum vulgare L.) Karoon cultivar was studied during 1995-1996 at Ramin Agricultural Research and Educational Center, University of Shahid Chamran, Ahwas, by using a split plot design in randomized complete block with 4 replications. Main plots were assigned to five levels of N fertilizer (45, 90, 135, 180 and 225 kg N/ha) as urea fertilizer and subplots to three cutting times (no cutting, cutting forage at early stem elongation without removing reproductive meristem and cutting forage in the middle of stem elongation with cut reproductive meristem).

The effects of N rates and cutting time on grain yield were significant. Maximum yield was obtained with 281.6 g/m2 when crop plants received 90 kg N/ha and cutting time at early stem elongation and minimum yield was obtained (158.2 g/m2) with 45 kg N/ha and cutting forage in the middle of stem elongation. Interactive effect of levels of N and cutting time on spike number per m2, grain number in spike and grain weight were significant. Among yield components, spike number and grain weight showed the highest sensitivity to both. Different levels of N increased forage protein concentration and protein yield significantly, but delay in cutting time decreased protein concentration and increased protein yield. Results indicated that high levels of N could not compensate for the delay in cutting time of forage for grain yield. It was concluded that application of 90 kg N/ha and cutting time in early stem elongation was preferable for grain and forage production as compared to other treatments.


M. Alikhani, O. Fallahpour, G. Ghorbani,
Volume 8, Issue 1 (4-2004)
Abstract

In order to determine the effects of using macaroni wastes instead of barley on dry matter intake (DMI), milk yield and composition, and nutrient digestibility, eight lactating Holstein cows (4 primiparous and 4 multiparous) in midlactation were used in a 44 Latin square design. The experimental periods were 21 d with 16 d for adjustment and 5 d for data collection. Treatments included a control diet (1) and diets 2, 3, and 4 containing 15, 30, and 45% macaroni wastes, respectively, which were fed three times a day as total mixed rations. During the last 5 days of each period, feed and fecal samples were taken for determination of DMI and apparent digestibilities and milk samples for fat, protein, lactose, and solids no fat (SNF). During the last day of collection period, urine samples were collected 3 and 5 h postfeeding for pH determination. The results showed no significant differences among experimental traits in either primiparous or multiparous, and across all cows. Milk yield and efficiency of feed conversion were nonsignificantly higher for diets 2, 3, and 4 compared with control cows. Compared to the control diet, DMI, fat, protein and SNF percentages did not significantly decrease in diets 3 and 4. From the results of this expriment, it may be concluded that replacing barley with macaroni wastes up to 45 percent could increase energy intake without any adverse effects on milk production and composition or on metabolic function in midlactating dairy cows.
A. Siah-Marguee, M.h. Rashed-Mohasel, M. Nasiri-Mahallati, M. Banayan-Aval, A. A. Mohammad-Abadi,
Volume 11, Issue 41 (10-2007)
Abstract

This study was performed in two barley fields, in Experimental Station, Agricultural College of Ferdowsi University of Mashhad in 2003. Sampling was done by systematic method in which samples were taken from the corners of 7m*7m grids using 0.5m 0.5m size quadrates in three stages (pre herbicide, post herbicide and pre harvesting stages). The results indicted that the density of annual weed seedlings in sugar beet- barley rotation was more than fallow- barley rotation, and the density of perennial weed seedlings in fallow-barley rotation was more than sugar beet- barley rotation. Map of species distribution and density confirmed patchiness distribution of the weeds. The shape and size of patches differed based on the field and weed species, but spatial distribution did not change considerably before and after the application of herbicide. Percentage of free weeds area was 11.5% and 1.5% in fallow-barley rotation and 0.6% and 0% in sugar beet- barley rotation in the first and second sampling stages, respectively. These results indicate beside emphasis on weed infestation. The result also indicates inefficacy of sugarbeet-barley rotation compared to follow-barley rotation. Apparently, the evaluation of management and paying special attention to weed dispersal within the field assist in the implementation of appropriate management strategy, which includes high efficacy, and profit for farmers as well as least damage to crops.
B Siahsar, A Taleei, A Peyghambari, M Naghavi, A Rezaee, Sh Kohkan,
Volume 13, Issue 47 (4-2009)
Abstract

In order to map the genomic regions affecting barley forage quantity and quality, two experiments were conducted with 72 doubled haploid lines and their two parents (‘Steptoe’ and ‘Morex’), at the Research Farms of the Faculty of Crop and Animal Sciences, University College of Agriculture and Natural Resources, University of Tehran and Agriculture and Natural Resources Research Station of Sistan, in 2007. The experiments were arranged in a randomized complete block design with two replications. Each plot consisted of six rows that were 3m in length and spaced 25cm apart. QTL analysis was conducted by Composite interval mapping (CIM) method separately for each trait in each location. The main effect of genotype was high significant for all the studied traits. Transgressive segregation in both directions (positive and negative) was observed for all the studied traits. There was a negative relationship between forage qualityrelated with quantity-related traits. Thirty-three QTLs controlling different studied traits were identified. Phenotypic variance explained by these QTLs varies from 7.07 to 39.04%. Highest LOD scores were obtained for the leaf to stem ratio on chromosome 2H. QTLs of forage quality (total digestible nutrient, dry organic matter digestibility, leaf to stem ratio, seed to forage ratio and number of tiller per plant) and quantity (plant height, forage wet and dry matter) indexes were found on chromosomes 1H, 2H, 3H, 4H, 5H, 6H and 7H. Most of mapped QTLs appear to be fairly stable between locations and can become candidates for marker-assisted selection.
F. Karimi, M. Sepehri, M. Afuni, M. A. Hajabbasi,
Volume 19, Issue 71 (6-2015)
Abstract

By modifying plants at genetical, physiological and ecological levels, entophytic fungi as the most important soil microorganisms have a pronounced growth-promoting activity and also increase plant resistance to biotic and abiotic stresses. This research was undertaken to evaluate the potential of P. indica to increase barley (Hordeumvulgare L.) resistance to lead (pb). Therefore, a greenhouse experiment with two fungus treatments (non-inoculated and P. indica inoculated) and five levels of pb (0, 25, 50, 100 and 500 mg/kg) with three replications was conducted based on a factorial design. Measurement of shoot and root dry weight showed that the growth of P. indica-colonized plants at all levels of pb treatments was higher (P < 0.05) than that of the corresponding controls. Also, chlorophyll concentration of inoculated plants with P. indica was superior to non-inoculated plants. In addition, the results showed that in contrast to the plant shoot, lead concentration in the root of P. indica-colonized plants was higher than the non-inoculated controls.



Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb