Search published articles


Showing 2 results for Biofilm

J. Abedi-Koupai, M. Javahery Tehrani, K. Behfarnia,
Volume 19, Issue 71 (6-2015)
Abstract

In recent years, due to the overpopulation, serious water shortages, and need to consume more water, the use of wastewater treatment plant has attracted lots of attention. When the pollution load is not high, biofilm reactors are commonly used for the purpose. In this study, the porous concrete as a bed biofilm in reducing pollution load of wastewater was investigated. In order to evaluate porous concrete, basic mix designs were selected according to regulations ACI211.3R. To increase the specific surface area of concrete for biofilm growth, fine particles were added to the basic mix in three stages with each stage 10% by weight of coarse particles. Experimental design was a randomized complete block. A rectangular channel (with the cross section 20×30 cm2) and 8 meters in length was constructed near the wastewater treatment plant of Isfahan University of Technology. Then, the concrete blocks were made, put on the channel and biofilm processing operations were conducted on the pores of porous concrete cubes. Qualitative tests for BOD, COD, TSS and total coliform of samples from wastewater inflow and outflow were performed. Results showed that the removal of these parameters increased by adding fine particles. The average removal rates of BOD, COD, TSS and total coliform for the first mix design (1400 kg per cubic meter of coarse particle and without fine sand) were 25%, 33%, 45% and 37%, respectively. Similarly, the average removal rates of BOD, COD, TSS and total coliform for the fourth mix (1400 kg per cubic meter of coarse particle and 420 kg per cubic meter of fine sand) were 36%, 40%, 57% and 81%, respectively. It could be concluded that porous concrete can be used as a bed biofilm, and the third mix design (1400 kg per cubic meter of coarse particle and 280 kg per cubic meter of fine sand) was the best mix design.


Z. Kolivand, Sh. Ghazimoradi, F. Kilanehei, O. Naeini,
Volume 25, Issue 2 (9-2021)
Abstract

The reuse of treated wastewater in countries such as Iran that suffers from drought is considered an important challenge in water management programs. The application of modern wastewater treatment systems particularly attached growth systems, owing to the short time required for start-up, low land requirements, and the absence of problems associated with sludge handling may be a resolution. The objective of this study is to investigate the performance of the Moving Bed Biofilm Reactor (MBBR) in treating synthetic municipal wastewater and selecting an appropriate model. In this way, a bench-scale reactor possessing an effective volume of 15 liters, and synthetic wastewater with influent COD of 500 mg/l (similar to typical municipal wastewater) has been used and the experiments with media filling percentages of 30%, 50%, and 70% and hydraulic retention times (HRT) of 4, 8, and 12 hours have been carried out. The observed data show that the optimum bulk density and hydraulic retention time are 50% and 4 hours, respectively. Also, the kinetic study of reactor performance indicates that Grau second-order model has better conformation with Moving Bed Biofilm Reactor results. In addition, a regression model for predicting effluent COD based on the filling percentage and retention time is presented.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb