Showing 9 results for Calcium Carbonate
M. Maftoun, H. Haghighat Nia, N. Karimian,
Volume 4, Issue 2 (7-2000)
Abstract
As apparent Zn recovery in mineral soils (saturated and unsaturated) is nill, the precise assessment of processes responsible for Zn retention in these soils is of great importance. A laboratory study was conducted to characterize Zn adsorption in eight lowland calcareous soils. The fit of sorption data was evaluated by Freundlich and Langmuir isotherms. In this study, 2-g soil samples were equilibrated for 24 hours with 40 mL 0.0lM CaCl
2 solution containing 5 to 500 mg Zn L
-1. The amount of Zn adsorbed was calculated based on the difference between the initial and equilibrium Zn concentrations.
Zinc adsorption data were fitted to a linear form of Freundlich equation. However the Langmuir isotherm was divided into two distinct linear portions, representing two different types of adsorption sites. The Langmuir K1 was higher and adsorption maxima (b1) was lower in part I (corresponding to lower Zn concentration) than in part II (corresponding to higher Zn concentration). Thus, it seems that in parts I and II, sites are more important for their high adsorption energy and adsorption capacity, respectively. Langmuir adsorption maxima (b2) was positively correlated with clay content, CCE and P concentration and negatively correlated with CEC.
A. Ronaghi, M. R. Chakerolhosseini, N. Karimian,
Volume 6, Issue 2 (7-2002)
Abstract
Phosphorus (P) and iron (Fe) are essential nutrients for plants. Iron availability is low in calcareous soils of Iran due to the excessive amounts of CaCO3 and high pH. Overfertilization of P fertilizers may also decrease Fe availability. The objective of this study was to evaluate the effect of P and Fe on the growth and chemical composition of corn (Zea mays L.) under greenhouse conditions. Treatments consisted of a factorial arrangement of P rates (0, 40, 80, 120 and 160 mg kg-1 as KH2PO4) and Fe rates (0, 2.5, 5 and 10 mg kg-1 as Fe EDDHA) in a completely randomized design with four replications. Plants were grown for 8 weeks in a loamy soil, calssified as Chitgar series (fine-loamy, carbonatic, thermic, Typic Calcixerepts). Results showd that P application up to 80 mg kg-1 increased corn top dry matter. Corn P concentration and total uptake increased by P application but decreased by Fe application. Application of Fe up to 5 mg kg-1 increased dry matter but decreased it at higher rates. Concentration and total uptake of Fe increased by Fe application but decreased by P application. Zinc and copper concentrations decresed significantly when P was added. Manganese concentration increased at 40 mg P kg-1 but decreased at higher rates. Iron application decreased zinc and manganese concentrations but had no effect on copper.
M. R. Chakerolhosseini, A. Ronaghi, M. Maftoun, N. Karimian,
Volume 6, Issue 4 (1-2003)
Abstract
Iron (Fe) availability is low in calcareous soils of Iran due to high pH levels and presence of excessive amounts of CaCO3. Overfertilization by phosphorus (P) fertilizers may also decrease Fe availability. The objective of this study was to evaluate the effects of P, Fe and their interactions on the growth and chemical composition of soybean [Glycine max (L.) Merrill] under greenhouse conditions. Treatments consisted of a factorial arrangement of P rates (0, 40, 80, 120 and 160 mg kg-1 as KH2PO4) and Fe rates (0, 2.5, 5 and 10 mg kg-1 as FeEDDHA) in a completely randomized design with four replications. Plants were grown for 8 weeks in a loamy soil, classified as Chitgar series (fine-loamy, carbonatic, thermic, Typic Calcixerepts). Results showed that P application up to 80 and Fe at 2.5 mg kg-1 increased shoot dry matter. Phosphorus concentration, total uptake and P:Fe ratio in soybean increased by P application but decreased by Fe application. Application of Fe up to 2.5 mg kg-1 increased dry matter but decreased it at higher rates. Concentration and total uptake of Fe increased by Fe application but decreased by P application. Interaction of P and Fe had no effect on shoot dry matter. Zinc (Zn) and copper (Cu) concentrations decreased significantly when P was added and manganese (Mn) concentration increased up to 40 mg P kg-1 but decreased at higher rates. Iron application had no effect on soybean Zn and Cu concentrations but decreased Mn concentration at all rates. Prior to any fertilizer recommendations, it is necessary to study the effects of P, Fe and their interactions on soybean under field conditions.
K. Rostami, M. R. Mosaddeghi, A. A. Mahboubi, A. A. Safari Sinegani ,
Volume 12, Issue 44 (7-2008)
Abstract
Transport and filtering of pathogenic bacteria through porous media and groundwater resources are important and، therefore the effect of various factors on bacteria transport and filtering has been given a great attention nowadays. In this study، effects of calcium sulfate and carbonate on Psedomonas fluorescens filtration and filtering parameters were investigated in saturated sand columns under steady-state flow. The calcium carbonate levels included 0، 5، 10 and 20 %w/w and calcium sulfate levels consisted of 0، 5 and 10 % w/w which were thoroughly mixed with sand (0.15-0.25 mm). The experiment was considered factorial in completely randomized design with three replicates. The treated sands were poured into pyrex cylinders with length of 20 cm and diameter of 7 cm. Then، steady-state saturated flow with constant flux was applied to the columns. When the steady-state flow was established، the bacteria suspension with concentration of 106 CFU cm-3 (C0) was injected as step input into the columns. The leaching then was continued up to 5 times of pore volume (PV). The effluent concentration of the bacteria (C) was measured at 0.25 PV intervals. Then، the sand columns were divided into 0-5، 5-10، 10-15 and 15-20 cm layers in order to measure the filtered bacteria in each layer. The results showed that the effects of calcium carbonate on retaining of the bacteria in the 5-10 and 10-15 cm layers were significant at 1% level. It was significant at 5% for the 15-20 cm layer. The effect of calcium sulfate was also significant at 5% for the 10-15 cm and 15-20 cm layers. The interactive effects of treatments on bacteria adsorption was significant for the 5-10، 10-15 and 15-20 cm layers. The retained concentration profile and the filtration coefficient were significantly affected by the treatments، showing higher bacteria adsorption at lower depths and predominance of physical filtering. The results showed the high filtering capacity of carbonate and sulfate minerals which could ultimately reduce bacteria transport in saturated porous media towards groundwater resources.
A. Khazaei, M.r. Mosaddeghi, A.a. Mahboubi,
Volume 12, Issue 44 (7-2008)
Abstract
Soil physical and chemical properties, and test conditions might affect soil structural stability. In this study, the effects of test conditions as well as intrinsic soil properties on structural stability were investigated for selected soils from Hamedan Province. Mean weight diameter (MWD) and tensile strength (Y) of aggregates were determined by wet sieving method and indirect Brazilian test, respectively. The soil samples were pre-wetted slowly to matric suction of 200 kPa before the wet sieving. The pre-wetted samples were wet-sieved for 5, 10 and 15 min in order to simulate different hydro-mechanical stresses imposed on soil structure. Tensile strength of soil aggregates were also measured at air-dry and 500 kPa matric suction conditions. Short duration shaking (i.e. 5 min) could effectively discriminate the Hamedan soils in terms of structural stability due to their fairly low aggregate stabilities. The soil organic matter content had the highest impact on MWD followed by both clay and CaCO3 content. The same was true for the Y values i.e. OM played the highest role in mechanical strength of soil aggregates. The highest coefficient of determination (R2) was obtained between Y and the intrinsic soil properties for matric suction of 500 kPa. The organic matter content had an important role in water and mechanically stable soil aggregates. The results indicated that short-duration wet sieving (i.e. 5 min) and measurements of tensile strength at matric suction of 500 kPa could be recommended for aggregate stability assessment in Hamedan soils
M. Ansari Azabadi , H.shirani, H. Dashti, A. Tajabadipur ,
Volume 15, Issue 57 (10-2011)
Abstract
Calcareous and gypsiferous soils are restricting factors for uptake of some plant nutrient elements and plant production. Most soils in Iran are calcareous and gypsiferous. Therefore, the aim of this study was the evaluation of calcium carbonate (Caco3) and gypsum effect on availability of some nutrients and corn growth. This study was conducted in a greenhouse at Vli-e-Asr University of Rafsanjan. Treatments were arranged in a factorial manner as a completely randomized design with three replications. Treatments were three levels of Caco3 (0, 20 and 40 g/100g soil), gypsum at three levels (0, 15 and 30 g/100g soil) and two soil textures (Sand and Silt clay loam). Results indicate that irrespective of soil texture, Caco3 application significantly decreased leaf area (by 80% and 15% for sand and silty clay loam texture, respectively), dry weight (by 80% and 15% respectively), plant height (regressed on Caco3 percentage by slopes -0.7 and -0.15 for sand and silty clay loam respectively), and shoot Fe (-9.67 and -11.3) and Zn (-0.24 and -1) uptake, but had no significant effect on shoot Cu uptake. In sandy soil, application of gypsum, significantly decreased leaf area (80%), dry weight (62%), and shoot Cu uptake (slope= -1.93), but had no significant effect on plant height and shoot Zn uptake. Gypsum application significantly reduced shoot Fe uptake (slope= -24.86) in fine textured soil, but it had no significant effect in coarse textured soil.
H. Kheirabad, A. H. Khoshgoftarmanesh, Z. Khanmohamadi,
Volume 16, Issue 62 (3-2013)
Abstract
Due to soil and plant zinc (Zn) deficiency and its effect on reducing yield and quality of agricultural products, application of Zn fertilizers has been intensified in recent years. To achieve optimum fertilizer management, knowledge of factors affecting Zn availability in soil and its uptake by plant is required. Therefore, this study was carried out to investigate the effect of certain soil physiochemical properties on Zn availability in soil and its uptake by corn. The experiment was laid out in a completely randomized design with factorial combination and three replicates in the research greenhouse of Isfahan University of Technology, in winter 2009. In this greenhouse experiment, 11 soil series were exposed to two Zn levels (0 and 15 mg Zn kg−1 in the form of zinc sulfate). The results indicated that Zn application significantly increased the dry matter weight and shoot and root Zn concentration of corn, although the magnitude of this increase varied depending on the soil type. There was no significant correlation between the DTPA-extractable Zn and the uptake of this nutrient element by corn. There was a negative significant correlation (P < 0.05) between the equivalent calcium carbonate content and available P with the DTPA-extractable Zn. A significant linear relationship (R2 = 0.31) was found between the buffer capacity of soil for Zn and clay content. According to the results obtained from the stepwise regression analysis, the DTPA-extractable Zn and buffer capacity of soil for Zn were not correlated with other measured soil properties.
M. Mir Mohammad Sadeghi, A. R. Sotoudehfar, E. Mokhtari,
Volume 20, Issue 77 (11-2016)
Abstract
Improvement of soils is among the major concerns in civil engineering, therefore a variety of approaches have been employed for different soil types. The annual budget of implementing the projects of this kind in countries clearly implies the importance of the subject. The loose granular soils and sediments have always imposed challenges due to their low strength and bearing capacity. Bio-mediated soil improvement has recently been introduced as a novel link of biotechnology (biotech) and civil engineering for improving the problematic soils, i.e. utilizing some bacteria to precipitate calcite on the soil particles. Bio-grouting is a branch of Bio-mediated soil improvement which is a method based on microbial calcium carbonate precipitation. In this regard, the soil samples were stabilized by injecting the bacterium Sporosarcina pasteurii in the first phase of the process and Urea and Calcium Chloride in the second phase of the process (two-phase injection) as the nutrients into the sandy soil columns and subjected to unconfined compressive strength test. In this research, Taguchi method was utilized for design of experience (DOE). Based on results obtained, the activity of the bacteria caused the precipitation of calcium carbonate in soil samples so that after 21 days, the unconfined compressive strength of the soil increased from 85 kPa in the control sample to 930 kPa at optimum condition.
S. Shakeri, S. A. Abtahi,
Volume 22, Issue 4 (3-2019)
Abstract
This research was carried out to assess the origin and clay minerals characteristics and their relationship with potassium forms in the calcareous soil of this region, with the humid climate conditions. Based on aerial photos and topographic maps, physiographic units were separated and soil sampling was done in each diagnostic horizon. The results showed that smectite was the main and dominant clay mineral in the study area. In well-drained pedons, the convincing process for smectite abundance seemed to be mainly the transformation of palygorskite and mica. According to the results, the exchangeable potassium in the surface horizon was higher than that of the subsurface horizons. The main reason for the higher level of exchangeable K in the soil surface, was more smectite and organic carbon. The results revealed that unlike exchangeable and non-exchangeable K, because of the suitable conditions like temperature and humidity in surface horizons, the relative mean of structural K in the surface soils was less than that in the subsurface. Also, since an increase in calcium carbonate resulted in a decrease in amount of clay and the amount of relative clay minerals (dilution effect), the amounts of exchangeable, non- exchangeable and structural K were decreased.